Abstract

We investigate the spectroscopic response of Rayleigh anomaly in a dielectric grating before and after it is coated with a layer of aluminum. The metallic coating enabled effective prohibition of the diffractions into the substrate and suppressed the background of the optical extinction spectrum of Rayleigh anomaly. This enhanced significantly both the contrast and the amplitude of the sensor signal based on the spectral shift of Rayleigh-anomaly. Sensor measurements were performed on the glucose/water solutions with different concentrations, which show improved performance due to the enhancement of the spectral contrast.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exploring surface sensitivity of Rayleigh anomaly in metal/dielectric multilayer gratings

Yue Su, Zhaoxin Geng, Zhiyuan Fan, Shicai Wang, Xiaoqing Lv, Weihao Fang, Weihua Pei, and Hongda Chen
Opt. Express 27(10) 14152-14162 (2019)

Surface sensitivity of Rayleigh anomalies in metallic nanogratings

Silvio Savoia, Armando Ricciardi, Alessio Crescitelli, Carmine Granata, Emanuela Esposito, Vincenzo Galdi, and Andrea Cusano
Opt. Express 21(20) 23531-23542 (2013)

Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors

Jian Zhang, Xinping Zhang, Xueqiong Su, Yi Lu, Shengfei Feng, and Li Wang
Opt. Express 22(3) 3296-3305 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [Crossref]
  2. L. Rayleigh, “On the Dynamical theory of the gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [Crossref]
  3. A. E. Serebryannikov and E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013).
    [Crossref]
  4. X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
    [Crossref]
  5. M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [Crossref] [PubMed]
  6. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
    [Crossref] [PubMed]
  7. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [Crossref] [PubMed]
  8. S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21(20), 23531–23542 (2013).
    [Crossref] [PubMed]
  9. S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
    [Crossref] [PubMed]
  10. M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
    [Crossref]
  11. P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
    [Crossref] [PubMed]
  12. G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
    [Crossref] [PubMed]
  13. Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Common. 4, 2381 (2013).
    [Crossref]
  14. N. L. Sun, J. Cui, Y. She, L. Lu, J. Zheng, and Z. C. Ye, “Tunable spectral filters based on metallic nanowire gratings,” Opt. Mater. Express 5(4), 912–919 (2015).
  15. S. A. Mohammad, W. Y. Jae, M. Robert, “Optical transmission filters with coexisting guided-mode resonanceand Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
  16. X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
    [Crossref]
  17. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
    [Crossref] [PubMed]
  18. X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
    [Crossref]
  19. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
    [Crossref] [PubMed]
  20. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
    [Crossref]
  21. F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
    [Crossref] [PubMed]
  22. X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
    [Crossref]
  23. X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
    [Crossref]

2015 (4)

G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
[Crossref] [PubMed]

N. L. Sun, J. Cui, Y. She, L. Lu, J. Zheng, and Z. C. Ye, “Tunable spectral filters based on metallic nanowire gratings,” Opt. Mater. Express 5(4), 912–919 (2015).

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref] [PubMed]

2014 (2)

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[Crossref] [PubMed]

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

2013 (3)

A. E. Serebryannikov and E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013).
[Crossref]

S. Savoia, A. Ricciardi, A. Crescitelli, C. Granata, E. Esposito, V. Galdi, and A. Cusano, “Surface sensitivity of Rayleigh anomalies in metallic nanogratings,” Opt. Express 21(20), 23531–23542 (2013).
[Crossref] [PubMed]

X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
[Crossref]

2012 (2)

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

2011 (2)

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

2009 (1)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

2008 (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

2007 (3)

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
[Crossref] [PubMed]

2005 (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

1965 (1)

1907 (1)

L. Rayleigh, “On the Dynamical theory of the gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Boag, A.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Chang, C. K.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Chang, Y.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Chen, C. Q.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Crescitelli, A.

Cui, J.

Cusano, A.

Darmawi, S.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Eitan, M.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Esposito, E.

Feng, F. S.

X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
[Crossref]

Feng, S.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Feng, S. F.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Friend, R. H.

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Galdi, V.

Giessen, H.

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Granata, C.

Gray, S. K.

Guo, H. C.

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Hanein, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Henning, T.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

Henzie, J.

Hessel, A.

Iluz, Z.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Jia, P.

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[Crossref] [PubMed]

Jin, C.

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Klar, P. J.

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Lee, C. K.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Li, G.

Lin, D. Z.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Lin, M.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Liu, F.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref] [PubMed]

Liu, H.

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Liu, H. M.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Liu, J.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Lu, L.

Ma, X. M.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

McMahon, J. M.

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Odom, T. W.

Oliner, A. A.

Ozbay, E.

A. E. Serebryannikov and E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013).
[Crossref]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Pang, Z. G.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Rayleigh, L.

L. Rayleigh, “On the Dynamical theory of the gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Ricciardi, A.

Savoia, S.

Schatz, G. C.

Scheuer, J.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Serebryannikov, A. E.

A. E. Serebryannikov and E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013).
[Crossref]

She, Y.

Shen, Y.

Shi, L.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Sun, L. X.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Sun, N. L.

Tetreault, N.

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Wang, Q.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Xiao, G.

Yang, J.

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[Crossref] [PubMed]

Ye, Z. C.

Yeh, C. S.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Yeh, J. T.

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Yifat, Y.

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Yuan, X. W.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhai, T. R.

X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
[Crossref]

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Zhang, B.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zhang, J.

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Zhang, X.

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref] [PubMed]

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Zhang, X. P.

X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
[Crossref]

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

Zhao, P. X.

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Zhao, Q.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Zheng, J.

Zhu, X. F.

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Acc. Chem. Res. (1)

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref] [PubMed]

ACS Photonics (1)

M. Eitan, Z. Iluz, Y. Yifat, A. Boag, Y. Hanein, and J. Scheuer, “Degeneracy Breaking of Wood’s Anomaly for Enhanced Refractive Index Sensing,” ACS Photonics 2(5), 615–621 (2015).
[Crossref]

Adv. Funct. Mater. (1)

X. P. Zhang, X. M. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21(22), 4219–4227 (2011).
[Crossref]

Adv. Mater. (1)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. P. Zhang, B. Q. Sun, H. C. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[Crossref]

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. Chang, M. Lin, J. T. Yeh, and J. Liu, “Experimental analysis of surface plasmon behavior in metallic circular slits,” Appl. Phys. Lett. 90(6), 061113 (2007).
[Crossref]

Biosens. Bioelectron. (1)

F. Liu and X. Zhang, “Fano coupling between Rayleigh anomaly and localized surface plasmon resonance for sensor applications,” Biosens. Bioelectron. 68, 719–725 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

M. M. Miller and A. A. Lazarides, “Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

X. W. Yuan, Q. Wang, X. F. Zhu, L. Shi, Q. Zhao, L. X. Sun, C. Q. Chen, and B. Zhang, “High Q factor propagating plasmon modes based on low-cost metals,” J. Phys. D Appl. Phys. 47(8), 085109 (2014).
[Crossref]

Nanoscale (1)

P. Jia and J. Yang, “A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing,” Nanoscale 6(15), 8836–8843 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Photon. Nanostructures (1)

X. P. Zhang, F. S. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostructures 11(2), 109–114 (2013).
[Crossref]

Phys. Rev. A (1)

A. E. Serebryannikov and E. Ozbay, “One-way Rayleigh-Wood anomalies and tunable narrowband transmission in photonic crystal gratings with broken structural symmetry,” Phys. Rev. A 87(5), 053804 (2013).
[Crossref]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. Rayleigh, “On the Dynamical theory of the gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Sensors (Basel Switzerland) (1)

X. P. Zhang, S. F. Feng, J. Zhang, T. R. Zhai, H. M. Liu, and Z. G. Pang, “Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals,” Sensors (Basel Switzerland) 12(12), 12082–12097 (2012).
[Crossref]

Small (1)

S. Feng, S. Darmawi, T. Henning, P. J. Klar, and X. Zhang, “A Miniaturized Sensor Consisting of Concentric Metallic Nanorings on the End Facet of an Optical Fiber,” Small 8(12), 1937–1944 (2012).
[Crossref] [PubMed]

Other (2)

S. A. Mohammad, W. Y. Jae, M. Robert, “Optical transmission filters with coexisting guided-mode resonanceand Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).

Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Common. 4, 2381 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)-(c) Fabrication of the aluminum (Al) coated photoresist (PR) grating: (a) Interference lithography using UV laser beams at 325 nm with a separation angle of α; (b) The fabricated PR grating on a silica substrate coated with a layer of indium tin oxide (ITO); (c) Aluminum deposition using thermal evaporation. (d) and (e): SEM and AFM images of the Al coated grating. Inset: an enlarged image for local view.
Fig. 2
Fig. 2 (a) and (b): Schematic illustration of the diffraction processes in a transparent and a metallic coated grating, respectively. (c) The calculated optical electric field distribution for TE and TM polarizations at a wavelength of 614 nm. (d) The simulated optical extinction spectra of aluminum coated grating for TM (red) and TE (black) polarizations.
Fig. 3
Fig. 3 (a) and (b): the optical extinction spectra measured on the gratings shown in Fig. 1 before and after metallic coating, respectively, at an incident angle of 16°. The upward black and red arrows denote the spectral positions of the Rayleigh anomaly in air and in water respectively. The thick yellow arrows show the enhancement of the spectral contrast of Rayleigh anomaly through coating the grating by aluminum.
Fig. 4
Fig. 4 Refractive-index sensing performance of the aluminum-coated grating when its environmental medium is changed from air to water at different angles of incidence. The black, red, and brown colors correspond to incident angles of 16 o, 18 o, and 20°, respectively. The dashed and solid curves correspond to the air and water environments. The spectral positions of Rayleigh anomaly and localized surface plasmon resonance of the aluminum nanolines in different environmental media are marked out by arrows.
Fig. 5
Fig. 5 Sensor measurements on glucose/water solutions with concentrations increased from 0% to 10%. The extinction spectra were calculated using the reflection spectrum through pure water (0% concentration) as the blank. Inset: amplitude of the sensor signal as a function of the concentration of the glucose/water signal, which is defined by the peak-to-valley difference of the extinction spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n 0 Λ(sinθ i ±sinθ d )=±λ,
Λ(n 0 sinθ i ±n S sinθ' d )=±λ',

Metrics