Abstract

We demonstrate a 1D micro-cavity film based on cholesteric liquid crystals and reactive mesogens. The 1D micro-cavity film was applied in reflective display and liquid crystal laser. In terms of display, the reflective light from 1D micro-cavity film can be switched between scattering state and reflective state, through a driven layer with dual-frequency cholesteric liquid crystal. In terms of liquid crystal laser, a distributed feedback laser was realized, with peak wavelength of 621 nm and narrow linewidth of 0.4 nm. The threshold of the laser was 20 μJ/pulse. The 1D micro-cavity film can be used in reflective display, liquid crystal laser, liquid crystal blackboard and others optical and photonic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-voltage-modulated laser based on dye-doped polymer stabilized cholesteric liquid crystal

Bo-wei Liu, Zhi-gang Zheng, Xu-chang Chen, and Dong Shen
Opt. Mater. Express 3(4) 519-526 (2013)

Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples

Jia-De Lin, Chung-Liang Chu, Hsin-Yu Lin, Borwen You, Chi-Ting Horng, Shuan-Yu Huang, Ting-Shan Mo, Chia-Yi Huang, and Chia-Rong Lee
Opt. Mater. Express 5(6) 1419-1430 (2015)

Full-color reflective display based on narrow bandwidth templated cholesteric liquid crystal film

Yong Li, Dan Luo, and Zeng Hui Peng
Opt. Mater. Express 7(1) 16-24 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  3. V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
    [Crossref]
  4. V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
    [Crossref] [PubMed]
  5. H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).
    [Crossref]
  6. R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
    [Crossref]
  7. J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
    [Crossref]
  8. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [Crossref] [PubMed]
  9. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
    [Crossref]
  10. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
    [Crossref] [PubMed]
  11. A. Y. Fuh, C. C. Liao, K. C. Hsu, C. L. Lu, and C. Y. Tsai, “Dynamic studies of holographic gratings in dye-doped liquid-crystal films,” Opt. Lett. 26(22), 1767–1769 (2001).
    [Crossref] [PubMed]
  12. S. Y. Lu and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [Crossref]
  13. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
    [Crossref]
  14. B. Tran and T. Baur, “Reactive mesogen retarders and applications,” Proc. SPIE 2012. 8489, 84890B (2012).
    [Crossref]
  15. S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
    [Crossref] [PubMed]
  16. M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
    [Crossref] [PubMed]
  17. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
    [Crossref]
  18. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
    [Crossref]
  19. S. Relaix and M. Mitov, “Polymer-stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
    [Crossref]
  20. G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
    [Crossref] [PubMed]
  21. M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection Band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  22. M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
    [Crossref]
  23. F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
    [Crossref] [PubMed]
  24. I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
    [Crossref]
  25. A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
    [Crossref]
  26. Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]

2014 (2)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
[Crossref]

2013 (1)

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

2012 (3)

B. Tran and T. Baur, “Reactive mesogen retarders and applications,” Proc. SPIE 2012. 8489, 84890B (2012).
[Crossref]

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection Band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

2011 (2)

Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

S. Relaix and M. Mitov, “Polymer-stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

2007 (4)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

S. Y. Lu and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

2006 (2)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

2002 (1)

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).
[Crossref]

2001 (1)

1998 (1)

I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
[Crossref]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
[Crossref]

1989 (1)

J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
[Crossref]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Agez, G.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Alkeskjold, T.

Anawati, A.

Arkhipkin, V. G.

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[Crossref] [PubMed]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Baur, T.

B. Tran and T. Baur, “Reactive mesogen retarders and applications,” Proc. SPIE 2012. 8489, 84890B (2012).
[Crossref]

Bjarklev, A.

Bobrovsky, A.

A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
[Crossref]

Bourgerette, C.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Broeng, J.

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
[Crossref]

Bunning, T. J.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Castles, F.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Chien, L. C.

S. Y. Lu and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Choi, S. S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Choi, S. W.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Coles, H. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Dai, Q.

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Day, F. V.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Dessaud, N.

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

Dierking, I.

I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
[Crossref]

Finkelmann, H.

J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
[Crossref]

Friend, R. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Fuh, A. Y.

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Gardiner, D. J.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Gerasimov, V. P.

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

Gunyakov, V. A.

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[Crossref] [PubMed]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Ha, N. Y.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Hands, P. J. W.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Hermann, D.

Hsiao, Y. C.

Hsu, K. C.

Hurtubise, J. M.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Ishikawa, K.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Kaufhold, W.

J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
[Crossref]

Kitzerow, H.

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).
[Crossref]

Ko, D. H.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Komitov, L.

I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
[Crossref]

Lægsgaard, J.

Lagerwall, S. T.

I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
[Crossref]

Lee, W.

Li, J.

Li, Y.

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Liao, C. C.

Lu, C. L.

Lu, S. Y.

S. Y. Lu and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
[Crossref]

Ma, J.

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

McConney, M. E.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Mitov, M.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection Band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

S. Relaix and M. Mitov, “Polymer-stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
[Crossref]

Morris, S. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Myslivets, S. A.

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[Crossref] [PubMed]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Nishimura, S.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Nosheen, S.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Park, B.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Parshin, A. M.

Paul, M. K.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Qasim, M. M.

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Rao, N. V. S.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Relaix, S.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

S. Relaix and M. Mitov, “Polymer-stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Samokhvalov, P.

A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
[Crossref]

Schätzle, J.

J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
[Crossref]

Shabanov, V. F.

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[Crossref] [PubMed]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Shibaev, V.

A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
[Crossref]

Shiromo, K.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Takanishi, Y.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Takezoe, H.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Tang, C. Y.

Tondiglia, V. P.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Toyooka, T.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Tran, B.

B. Tran and T. Baur, “Reactive mesogen retarders and applications,” Proc. SPIE 2012. 8489, 84890B (2012).
[Crossref]

Tsai, C. Y.

Vetrov, S. Ya.

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

White, T. J.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Wu, J.

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Wu, J. W.

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

Wu, R.

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Wu, S. T.

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Zyryanov, V. Y.

Zyryanov, V. Ya.

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection Band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Bobrovsky, P. Samokhvalov, and V. Shibaev, “An Effective Method for the Preparation of Stable LC Composites with High Concentration of Quantum Dots,” Adv. Opt. Mater. 2(12), 1167–1172 (2014).
[Crossref]

Appl. Phys. Lett. (3)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

S. Y. Lu and L. C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Chem. Commun. (Camb.) (1)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Eur Phys J E Soft Matter (1)

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. Ya. Zyryanov, and V. F. Shabanov, “Angular tuning of defect modes spectrum in the one-dimensional photonic crystal with liquid-crystal layer,” Eur Phys J E Soft Matter 24(3), 297–302 (2007).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

I. Dierking, L. Komitov, and S. T. Lagerwall, “On In-plane Smectic Layer Reorientation in Ferroelectric Liquid Crystal Cells,” Jpn. J. Appl. Phys. 37(1), 57–60 (1998).
[Crossref]

Liq. Cryst. (3)

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix and M. Mitov, “Polymer-stabilised cholesteric liquid crystals with a double helical handedness: influence of an ultraviolet light absorber on the characteristics of the circularly polarised reflection band,” Liq. Cryst. 35(8), 1037–1042 (2008).
[Crossref]

Liq. Cryst. Today (1)

H. Kitzerow, “Tunable photonic crystals,” Liq. Cryst. Today 11(4), 3–7 (2002).
[Crossref]

Makromol. Chem. (1)

J. Schätzle, W. Kaufhold, and H. Finkelmann, “Nematic elastomers: The influence of external mechanical stress on the liquid-crystalline phase behavior,” Makromol. Chem. 190(12), 3269–3284 (1989).
[Crossref]

Nat. Mater. (1)

F. Castles, F. V. Day, S. M. Morris, D. H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Nature (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(30), 467–469 (1995).
[Crossref]

Opt. Commun. (1)

R. Wu, Y. Li, J. Wu, J. Ma, and Q. Dai, “A study of lasing wavelength by DOS in the temperature-tunable cholesteric liquid crystal lasers,” Opt. Commun. 300, 1–4 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

S. W. Choi, N. Y. Ha, K. Shiromo, N. V. S. Rao, M. K. Paul, T. Toyooka, S. Nishimura, J. W. Wu, B. Park, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021702 (2006).
[Crossref] [PubMed]

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Proc. SPIE 2012. (1)

B. Tran and T. Baur, “Reactive mesogen retarders and applications,” Proc. SPIE 2012. 8489, 84890B (2012).
[Crossref]

Sov. Phys. JETP (1)

V. G. Arkhipkin, V. A. Gunyakov, S. A. Myslivets, V. P. Gerasimov, V. Ya. Zyryanov, S. Ya. Vetrov, and V. F. Shabanov, “One-Dimensional Photonic Crystals with a Planar Oriented Nematic Layer: Temperature and Angular Dependence of the Spectra of Defect Modes,” Sov. Phys. JETP 106(2), 388–398 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The chemical structures of reactive mesogen monomers.
Fig. 2
Fig. 2 Fabrication process of 1D cavity. (a) The CLC/RMs syrup was capillary filled into an empty LC cell. (b) The 1D device was illuminated by UV laser (325 nm, 10 mW/cm2), and the RMs monomers were polymerized to a rigid network with porous. (c) The device was immersed in toluene for three days to soak out CLC molecules and unpolymerized RM monomers. (d) The polymer film was fetched out from the LC cell, and dried in vacuum oven at 50 °C for 10 minutes. The film was refilled with nematic liquid crystals.
Fig. 3
Fig. 3 Reflection spectrum of 1D micro-cavity measured (a) before UV illumination; (b) after UV illumination; (c) soaking out of CLC/umpolymerized RM monomers, and (d) refilling with nematic liquid crystal E7, respectively. The insets show optical imaging of composite captured by POM. The directions of polarizer and analyzer are represented by P and A, respectively. The scale bar is 100 µm.
Fig. 4
Fig. 4 (a) Driving scheme for dual-frequency cholesteric liquid crystal, the DFCLC switched bi-directionally between the planar state (P state) and the focal conic state (FC state) by frequency-modulated voltage pulses. (b) Transparent and scattering states of the reflective display.
Fig. 5
Fig. 5 (a) The spectrum of laser from the 1D micro-cavity film, at different pump energies. (b) The laser intensity as a function of pump energy. The threshold is 20 μJ/pulse.

Metrics