Abstract

Gold nanohelix arrays (NHAs) were fabricated on a smooth glass substrate using glancing angle deposition technique. At a deposition angle of 89°, gold NHAs were fabricated by introducing liquid nitrogen to flow under the backside of BK7 glass substrate holder to reduce the temperature of substrate to be around −140 °C under deposition. The spin rate was controlled with respect to the deposition rate to grow three different sized nanohelices. The morphology and optical properties were measured and compared for the three samples. In application, the surface-enhanced Raman scattering (SERS) from each three-dimensional NHA was measured and analyzed with near field simulation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Capping metallic nanohelixes with SiO2 nanohelixes to enhance broadband and wide-angle light extinction

Yi-Jun Jen, Chia-Liang Yu, Meng-Jie Lin, and Chih-Yung Hsiao
Opt. Express 26(17) 21510-21517 (2018)

Broadband SERS substrates by oblique angle deposition method

Yang Yang, Zhipeng Hu, Yin Wang, Baoju Wang, Qiuqiang Zhan, Yuan Zhang, and Xianyu Ao
Opt. Mater. Express 6(8) 2644-2654 (2016)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  2. J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
    [Crossref]
  3. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
    [Crossref] [PubMed]
  4. Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
    [Crossref] [PubMed]
  5. K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
    [Crossref]
  6. A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
    [Crossref] [PubMed]
  7. D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
    [Crossref]
  8. Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
    [Crossref] [PubMed]
  9. C. M. Zhou and D. Gall, “Competitive growth of Ta nanopillars during glancing angle deposition,” J. Vac. Sci. Technol. A 25(2), 312–318 (2007).
    [Crossref]
  10. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
    [Crossref] [PubMed]
  11. A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
    [Crossref] [PubMed]
  12. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  13. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
    [Crossref]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2014 (1)

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

2013 (4)

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
[Crossref] [PubMed]

2012 (1)

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

2011 (1)

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

2010 (1)

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2007 (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

C. M. Zhou and D. Gall, “Competitive growth of Ta nanopillars during glancing angle deposition,” J. Vac. Sci. Technol. A 25(2), 312–318 (2007).
[Crossref]

2005 (1)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

1997 (1)

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abell, J.

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Braz, A.

A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
[Crossref] [PubMed]

Brett, M. J.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Chan, C. T.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Chaney, S. B.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dluhy, R. A.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

Eslami, S.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fischer, P.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Gall, D.

C. M. Zhou and D. Gall, “Competitive growth of Ta nanopillars during glancing angle deposition,” J. Vac. Sci. Technol. A 25(2), 312–318 (2007).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García-Ruiz, C.

A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
[Crossref] [PubMed]

Gibbs, J. G.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Giessen, H.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Goel, P.

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

He, Y.

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, C. K.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Lee, T. C.

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Lee, Y. H.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Li, H.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ling, X. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

López-López, M.

A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
[Crossref] [PubMed]

Mark, A. G.

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Phang, I. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Robbie, K.

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schäferling, M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Shanmukh, S.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

Singh, D. P.

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

Singh, J. P.

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wei, Z.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Yin, X.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Yu, X.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Zhang, Z.

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Zhao, Y.

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

Zhao, Y. P.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

Zhou, C. M.

C. M. Zhou and D. Gall, “Competitive growth of Ta nanopillars during glancing angle deposition,” J. Vac. Sci. Technol. A 25(2), 312–318 (2007).
[Crossref]

Zhou, Q.

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

ACS Nano (1)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103(21), 213101 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

Q. Zhou, Y. He, J. Abell, Z. Zhang, and Y. Zhao, “Surface-enhanced Raman scattering from helical silver nanorod arrays,” Chem. Commun. (Camb.) 47(15), 4466–4468 (2011).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

A. Braz, M. López-López, and C. García-Ruiz, “Raman spectroscopy for forensic analysis of inks in questioned documents,” Forensic Sci. Int. 232(1-3), 206–212 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. P. Singh, P. Goel, and J. P. Singh, “Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures,” J. Appl. Phys. 112(10), 104324 (2012).
[Crossref]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Vac. Sci. Technol. A (2)

C. M. Zhou and D. Gall, “Competitive growth of Ta nanopillars during glancing angle deposition,” J. Vac. Sci. Technol. A 25(2), 312–318 (2007).
[Crossref]

K. Robbie and M. J. Brett, “Sculptured thin films and glancing angle deposition: Growth mechanics and applications,” J. Vac. Sci. Technol. A 15(3), 1460–1465 (1997).
[Crossref]

Nat. Mater. (1)

A. G. Mark, J. G. Gibbs, T. C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Small (1)

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Top-view and cross-section SEM images of 1.5-turn Au NHAs deposited at ω = 0.018 rpm (a, b), ω = 0.024 rpm (c, d) and ω= 0.030 rpm (e, f).
Fig. 2
Fig. 2 Schematic diagram of a nanohelix.
Fig. 3
Fig. 3 Circularly polarized transmittance and reflectance spectra of (a) sample-1, (b) sample-2 (c) sample-3. Transmittance difference (∆T) and reflectance difference spectra (∆R) of (d) sample-1, (e) sample-2 (f) sample-3.
Fig. 4
Fig. 4 Calculated values of g-factor as functions of wavelength for (a) sample-1, (b) sample-2 (c) sample-3.
Fig. 5
Fig. 5 SERS spectra of sample-1(black line), sample-2(red line), sample-3(blue line).
Fig. 6
Fig. 6 SERS spectra of Au NRAs (black line), Ag NRAs(red line). The insects are the SEM images of Ag and Au NRAs.
Fig. 7
Fig. 7 Measured and simulated extinctance spectra of (a) sample-1, (b) sample-2 (c) sample-3.
Fig. 8
Fig. 8 Simulated structure and corresponding intensity contour of electric field of nanohelix for (a) sample-1, (b) sample-2 and (c) sample-3. Note that, the insets of (a), (b), and (c) are the SEM image of simulated nanohelix.

Tables (1)

Tables Icon

Table 1 spin rates, radius of curvature, diameter of the arms, nanohelix spacing, pitch length, and pitch angle of Au NHAs

Metrics