Abstract

We report on the optical-signal amplification in a cladding waveguide that was fabricated in Er:YAG ceramic by multiple carbon-ion irradiation. The waveguide has a multilayer structure that assures good overlap between the pump beam and the input signal. Under the pump at 980 nm with a fiber-coupled diode laser, the cladding waveguide possess a peak internal gain of 2.6 dB/cm at 1550 nm and of 4.0 dB/cm at 1585 nm. This work demonstrates the potential use as amplifier in the C and L communication bands of cladding waveguides fabricated in Er:YAG by carbon ion irradiation technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier

Yang Tan, Qingfang Luan, Fengqin Liu, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 21(12) 13992-13997 (2013)

Channel waveguide lasers at 1064  nm in Nd:YAG crystal produced by C5+ ion irradiation with shadow masking

Yicun Yao, Yuechen Jia, Feng Chen, Shavkat Akhmadaliev, and Shengqiang Zhou
Appl. Opt. 53(2) 195-199 (2014)

Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen
Opt. Express 20(17) 18620-18629 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Vu, S. Farahani, and S. Madden, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express 23(2), 747–755 (2015).
    [Crossref] [PubMed]
  2. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
    [Crossref]
  3. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, Modeling, and Performance of Erbium-Doped Ta2O5 Waveguide Amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
    [Crossref]
  4. H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).
  5. J. Purnawirman, T. N. Sun, G. Adam, D. Leake, J. D. Coolbaugh, E. Bradley, Shah Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38(11), 1760–1762 (2013).
    [Crossref] [PubMed]
  6. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
    [Crossref]
  7. R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).
  8. K. Vu, S. Farahani, and S. Madden, “980nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band,” Opt. Express 23(2), 747–755 (2015).
    [Crossref] [PubMed]
  9. K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
  10. Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
    [Crossref] [PubMed]
  11. Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
    [Crossref] [PubMed]
  12. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
    [Crossref]
  13. J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).
  14. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
    [Crossref] [PubMed]
  15. Y. Tan, S. Akhmadaliev, S. Q. Zhou, S. Q. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22, 3572–3577 (2014).
  16. X. Zhang, D. Shen, H. Huang, J. Liu, X. Liu, J. Zhang, J. Zhang, D. Tang, and D. Fan, “Widely tunable, narrow bandwidth polycrystalline ceramic Er:YAG laser with a volume Bragg grating,” Opt. Express 22(6), 7154–7159 (2014).
    [Crossref] [PubMed]
  17. Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
    [Crossref]
  18. C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
    [Crossref] [PubMed]
  19. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
    [Crossref]
  20. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
    [Crossref] [PubMed]
  21. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  22. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  23. Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
    [Crossref] [PubMed]
  24. L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
    [Crossref]

2015 (4)

2014 (4)

2013 (3)

2012 (2)

A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, Modeling, and Performance of Erbium-Doped Ta2O5 Waveguide Amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
[Crossref]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

2011 (3)

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2007 (2)

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

2005 (1)

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

2004 (1)

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

2001 (1)

H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).

Adam, G.

Agulló-López, F.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

Akhmadaliev, S.

Beecher, S. J.

Bettiol, A. A.

Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
[Crossref] [PubMed]

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Bradley, E.

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Caballero, O.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

Calmano, T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Chen, F.

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Q. Zhou, S. Q. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22, 3572–3577 (2014).

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
[Crossref] [PubMed]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Chen, H.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Chiodo, N.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Coolbaugh, J. D.

Fan, D.

Farahani, S.

Fredrich-Thornton, S. T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Gao, W. L.

García, G.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

García Cabañes, A.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

García Navarro, A.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

Han, H.

H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).

Huang, H.

Huang, H. T.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Huber, G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Jaque, D.

Jha, A.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Jiao, Y.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Jipa, F.

Kar, A. K.

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Leake, D.

Li, X.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Liu, F.

Liu, J.

Liu, K.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Liu, X.

Lu, Q.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Luan, Q.

Ma, H.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Ma, H. J.

Madden, S.

Murugan, G. S.

Nie, R.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Olivares Villegas, J.

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

Osellame, R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Paschke, A. G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Pavel, N.

Petermann, K.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Psaila, N. D.

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Pun, E. Y. B.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Purnawirman, J.

Qian, L. J.

Qin, X. P.

Salamu, G.

Seo, S.

H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).

Shah Hosseini,

Shang, Z.

Shen, D.

Shen, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Shin, J. H.

H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).

Siebenmorgen, J.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Solé, J. G.

Subramanian, A. Z.

Sum, T. C.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Sun, S. Q.

Sun, T. N.

Tan, Y.

Tang, D.

Tang, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Thomson, R. R.

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

van Kan, J. A.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Vanga, S. K.

Vu, K.

Wang, K.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, L.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, X.

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

Wang, Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

C. Zhang, D. Y. Shen, Y. Wang, L. J. Qian, J. Zhang, X. P. Qin, D. Y. Tang, X. F. Yang, and T. Zhao, “High-power polycrystalline Er:YAG ceramic laser at 1617 nm,” Opt. Lett. 36(24), 4767–4769 (2011).
[Crossref] [PubMed]

Watt, F.

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

Watts, M. R.

Wilkinson, J. S.

Yagi, H.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Yang, X. F.

Zamfirescu, M.

Zervas, M. N.

Zhang, C.

Zhang, H. J.

Zhang, J.

Zhang, X.

Zhao, T.

Zhou, S.

Zhou, S. Q.

Zhu, Z. X.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Appl. Phys. B (2)

J. Olivares Villegas, G. García, A. García Navarro, F. Agulló-López, O. Caballero, and A. García Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. B 86, 183501 (2005).

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[Crossref]

Appl. Phys. Lett. (3)

H. Han, S. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett. 79, 4568 (2001).

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

K. Liu, E. Y. B. Pun, T. C. Sum, A. A. Bettiol, J. A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).

J. Appl. Phys. (1)

L. Wang, F. Chen, X. Wang, K. Wang, Y. Jiao, L. Wang, X. Li, Q. Lu, H. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101(5), 053112 (2007).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (2)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams from photonic applications,” Laser Photonics Rev. 6(5), 622–640 (2012).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photonics Rev. 5(3), 368–403 (2011).
[Crossref]

Laser Phys. Lett. (1)

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645 nm,” Laser Phys. Lett. 10(5), 055801 (2013).
[Crossref]

Opt. Express (10)

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, S. Akhmadaliev, S. Zhou, and F. Chen, “Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier,” Opt. Express 21(12), 13992–13997 (2013).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Q. Zhou, S. Q. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22, 3572–3577 (2014).

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique,” Opt. Express 22(5), 5177–5182 (2014).
[Crossref] [PubMed]

X. Zhang, D. Shen, H. Huang, J. Liu, X. Liu, J. Zhang, J. Zhang, D. Tang, and D. Fan, “Widely tunable, narrow bandwidth polycrystalline ceramic Er:YAG laser with a volume Bragg grating,” Opt. Express 22(6), 7154–7159 (2014).
[Crossref] [PubMed]

K. Vu, S. Farahani, and S. Madden, “Passive Q switching of Er-Yb fiber laser with semiconductor saturable absorber,” Opt. Express 23(2), 747–755 (2015).
[Crossref] [PubMed]

K. Vu, S. Farahani, and S. Madden, “980nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band,” Opt. Express 23(2), 747–755 (2015).
[Crossref] [PubMed]

Y. Tan, Z. Shang, S. K. Vanga, A. A. Bettiol, and F. Chen, “High-gain optical waveguide amplifier based on proton beam writing of Nd:YAG crystal,” Opt. Express 23(11), 14612–14617 (2015).
[Crossref] [PubMed]

Z. Shang, Y. Tan, S. Akhmadaliev, S. Zhou, and F. Chen, “Cladding-like waveguide structure in Nd:YAG crystal fabricated by multiple ion irradiation for enhanced waveguide lasing,” Opt. Express 23(21), 27612–27617 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Optical microscope image of the waveguide cross section. (b) Reconstructed refractive index distribution. Measured propagation modes at the wavelength of 980 nm (c) and 1550 nm (d).
Fig. 2
Fig. 2 Schematic plot of the experimental setup for the optical amplification in the Er:YAG ceramic waveguide. The inset picture is the microphotograph of the light propagation in the waveguide.
Fig. 3
Fig. 3 The room temperature emission spectra (4I13/24I15/2) under 980 nm laser excitation from the Er:YAG ceramic waveguide and Er:YAG ceramic bulk material, respectively.
Fig. 4
Fig. 4 (a) Measured absorption and gain spectra in the wavelength range of 1520 nm – 1620 nm. (b) Measured extinction/gain as a function of the pump power at the wavelength of 1550 nm and 1585 nm, respectively.
Fig. 5
Fig. 5 The noise figure of the Er:YAG ceramic waveguide amplifier operating within the spectral range of 1520 nm - 1620 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G=10Lo g 10 ( P out P ASE P signal )
NF(dB)=10Lo g 10 ( P ASE hν B 0 G + 1 G )

Metrics