Abstract

Graphene and its derivative graphene oxide (GO) have been the focus of attention in the field of chemical and biological sensing. In this paper, we report a fiber-optic sensor for chemical gas sensing by using graphene oxide coated microfiber knot resonator (GMKR). The refractive index of GO was changed when the gas molecules were adsorbed to the surface of GO, and the gas concentration varying induced refractive index change can be detected by measuring the interference fringes shift of the GMKR. The experimental results show the sensitivities of ~0.35pm/ppm for NH3 and ~0.17pm/ppm for CO detection, due to the different adsorption energy and charge transfer ability between the gas molecules and GO. Experimental results show GO is a promising candidate for gas sensing and can be combined with various fiber-optic devices due to the easy transfer process.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang
Opt. Express 22(23) 28154-28162 (2014)

Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor

Jingle Zhang, Haiwei Fu, Jijun Ding, Min Zhang, and Yi Zhu
Appl. Opt. 56(31) 8828-8831 (2017)

Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing

Yu Wu, Baicheng Yao, Anqi Zhang, Yunjiang Rao, Zegao Wang, Yang Cheng, Yuan Gong, Weili Zhang, Yuanfu Chen, and K. S. Chiang
Opt. Lett. 39(5) 1235-1237 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  2. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
    [Crossref]
  3. M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
    [Crossref]
  4. Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
    [Crossref]
  5. D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
    [Crossref] [PubMed]
  6. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
    [Crossref] [PubMed]
  7. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
    [Crossref] [PubMed]
  8. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
    [Crossref] [PubMed]
  9. C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
    [Crossref] [PubMed]
  10. L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
    [PubMed]
  11. X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
    [Crossref]
  12. M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
    [Crossref] [PubMed]
  13. X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
    [PubMed]
  14. C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
    [Crossref] [PubMed]
  15. Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
    [Crossref] [PubMed]
  16. H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
    [Crossref]
  17. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
    [Crossref]
  18. J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
    [Crossref]
  19. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  20. B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
    [Crossref]
  21. A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
    [Crossref]
  22. S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
    [Crossref]
  23. G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
    [PubMed]
  24. S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
    [Crossref] [PubMed]
  25. S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem. 173, 1–21 (2012).
    [Crossref]
  26. P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
    [Crossref]
  27. B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
    [Crossref]
  28. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
    [Crossref]
  29. S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
    [Crossref]
  30. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
    [Crossref]
  31. C. Y. Lee and M. S. Strano, “Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors,” Langmuir 21(11), 5192–5196 (2005).
    [Crossref] [PubMed]
  32. F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
    [Crossref]
  33. K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
    [Crossref] [PubMed]

2016 (1)

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

2015 (4)

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

2014 (4)

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
[PubMed]

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

2013 (3)

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

2012 (3)

C. Xu, Y. Jin, L. Yang, J. Yang, and X. Jiang, “Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide,” Opt. Express 20(20), 22398–22405 (2012).
[Crossref] [PubMed]

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem. 173, 1–21 (2012).
[Crossref]

2011 (7)

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
[Crossref]

J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
[Crossref]

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

2010 (4)

D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

2009 (1)

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

2008 (2)

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

2007 (2)

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

2005 (1)

C. Y. Lee and M. S. Strano, “Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors,” Langmuir 21(11), 5192–5196 (2005).
[Crossref] [PubMed]

1970 (1)

F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[Crossref]

Abdala, A.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Aftenieva, O. A.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Arsat, R.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Arsenin, A. V.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Asokan, S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Basu, S.

S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem. 173, 1–21 (2012).
[Crossref]

Bhat, N.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Bhattacharyya, P.

S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem. 173, 1–21 (2012).
[Crossref]

Bielawski, C. W.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Breedon, M.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Cao, Y.

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

Carlo, C.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Chen, D.

D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
[Crossref] [PubMed]

Chen, J. H.

G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
[PubMed]

Chen, X.

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

Chen, Y. F.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Cheng, M. M.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Cheng, Y.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Cheon, K. H.

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Chiang, K. S.

Cho, J.

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Chung, D. S.

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Deng, S.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Dikin, D. A.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Dommett, G. H.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Dreyer, D. R.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Duan, W. H.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Emanuele, T.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Evmenenko, G.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Fan, C. H.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Fan, H. M.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Feito, M. J.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Francesco, P.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Gilje, S.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Gonçalves, G.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Gong, Y.

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Gu, B. L.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Gu, M.

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

Hao, S. G.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hu, W. Q.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Huang, B.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Huang, Q.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Jia, Y. Y.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Jiang, X.

Jin, Y.

Jun, D. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Kalantar-zadeh, K.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Kaner, R. B.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Kim, Y. H.

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Koenig, J. L.

F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[Crossref]

Kohlhaas, K. A.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Lee, C. Y.

C. Y. Lee and M. S. Strano, “Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors,” Langmuir 21(11), 5192–5196 (2005).
[Crossref] [PubMed]

Lee, J. M.

J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
[Crossref]

Leenaerts, O.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Li, J.

D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
[Crossref] [PubMed]

Li, W. X.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Li, X.

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Li, Z. Y.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Linares, J.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Ling, L.

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Liu, Z. R.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Lonkar, S.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Lu, G.

G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
[PubMed]

Luca, G.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Luca, O.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Marques, P. A.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Matesanz, M. C.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Mhaisalkar, S.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Miao, X.

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Michele, N.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Nguyen, S. T.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Ocola, L. E.

G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
[PubMed]

Olivo, M.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Park, S.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Park, W.

J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
[Crossref]

Partoens, B.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Peeters, F. M.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Peng, C.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Piner, R. D.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Portolés, M. T.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Pumera, M.

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

Rao, Y. J.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Ruoff, R. S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Sandro, S.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Sayle, D. C.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Shafiei, M.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Shi, G. Q.

Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
[Crossref]

Shi, S.

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

Singh, K. K.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Sood, A. K.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Sow, C. H.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Spizziri, P. G.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Sridevi, S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Stebunov, Y. V.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Stefano, P.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Strano, M. S.

C. Y. Lee and M. S. Strano, “Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors,” Langmuir 21(11), 5192–5196 (2005).
[Crossref] [PubMed]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Sun, W.

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

Sun, Y. Q.

Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Swaminathan, S.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Tan, H. R.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Tang, L.

D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
[Crossref] [PubMed]

Tjoa, V.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Tuinstra, F.

F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[Crossref]

Vallet-Regi, M.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Varghese, S. S.

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Vasu, K. S.

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

Vila, M.

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Vincenzo, P.

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Volkov, V. S.

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

Wang, L.

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

Wang, Z. G.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Wei, J.

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

Wlodarski, W.

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Wu, C.

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Wu, J.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Wu, Q.

Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
[Crossref]

Wu, Y.

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Xu, C.

Yang, J.

Yang, J. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, L.

Yang, S. S.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yao, B.

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

Yao, B. C.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Yao, T.

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

Yi, J.

J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
[Crossref]

Yin, J. L.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Yoon, H. J.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Zhang, A. Q.

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, K. S. Chiang, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Zhang, Q.

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

Zhang, T. H.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

Zhang, W. L.

Zhang, X. Y.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Zhou, G.

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Zhou, Y.

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Zhou, Z. X.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Zhu, Z. Y.

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

Zimney, E. J.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Highly Sensitive and Selective Sensor Chips with Graphene-Oxide Linking Layer,” ACS Appl. Mater. Interfaces 7(39), 21727–21734 (2015).
[Crossref] [PubMed]

K. H. Cheon, J. Cho, Y. H. Kim, and D. S. Chung, “Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide,” ACS Appl. Mater. Interfaces 7(25), 14004–14010 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (1)

C. Wu, Y. Zhou, X. Miao, and L. Ling, “A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide,” Analyst (Lond.) 136(10), 2106–2110 (2011).
[Crossref] [PubMed]

Biomaterials (1)

M. C. Matesanz, M. Vila, M. J. Feito, J. Linares, G. Gonçalves, M. Vallet-Regi, P. A. Marques, and M. T. Portolés, “The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations,” Biomaterials 34(5), 1562–1569 (2013).
[Crossref] [PubMed]

Carbon (2)

X. Y. Zhang, J. L. Yin, C. Peng, W. Q. Hu, Z. Y. Zhu, W. X. Li, C. H. Fan, and Q. Huang, “Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration,” Carbon 49(3), 986–995 (2011).
[Crossref]

S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007).
[Crossref]

Chem. Phys. Lett. (1)

R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chem. Phys. Lett. 467(4-6), 344–347 (2009).
[Crossref]

Chem. Soc. Rev. (2)

D. Chen, L. Tang, and J. Li, “Graphene-based materials in electrochemistry,” Chem. Soc. Rev. 39(8), 3157–3180 (2010).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Energy Environ. Sci. (2)

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

Y. Q. Sun, Q. Wu, and G. Q. Shi, “Graphene based new energy materials,” Energy Environ. Sci. 4(4), 1113–1132 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, “Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor,” J. Am. Chem. Soc. 134(10), 4905–4917 (2012).
[Crossref] [PubMed]

J. Chem. Phys. (1)

F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53(3), 1126–1130 (1970).
[Crossref]

J. Phys. Chem. C (2)

P. Stefano, P. Francesco, G. Luca, C. Carlo, T. Emanuele, P. Vincenzo, N. Michele, S. Sandro, and O. Luca, “Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, “Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor,” J. Phys. Chem. C 112(35), 13442–13446 (2008).
[Crossref]

Langmuir (1)

C. Y. Lee and M. S. Strano, “Understanding the Dynamics of Signal Transduction for Adsorption of Gases and Vapors on Carbon Nanotube Sensors,” Langmuir 21(11), 5192–5196 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

G. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 203, 135–142 (2014).
[PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (1)

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Photonic Sensors (1)

A. Q. Zhang, Y. Wu, B. Yao, and Y. Gong, “Optimization Study on Graphene-Coated Microfiber Bragg Grating Structures for Ammonia Gas Sensing,” Photonic Sensors 5(1), 84–90 (2015).
[Crossref]

Phys. Rev. B (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Sci. Rep. (2)

L. Wang, T. Yao, S. Shi, Y. Cao, and W. Sun, “A label-free fluorescent probe for Hg²⁺ and biothiols based on graphene oxide and Ru-complex,” Sci. Rep. 4, 5320 (2014).
[PubMed]

X. Li, Q. Zhang, X. Chen, and M. Gu, “Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording,” Sci. Rep. 3, 2819 (2013).
[PubMed]

Sens. Actuators B Chem. (7)

J. Yi, J. M. Lee, and W. Park, “Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors,” Sens. Actuators B Chem. 155(1), 264–269 (2011).
[Crossref]

H. J. Yoon, D. H. Jun, J. H. Yang, Z. X. Zhou, S. S. Yang, and M. M. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, “Recent advances in graphene based gas sensors,” Sens. Actuators B Chem. 218, 160–183 (2015).
[Crossref]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B Chem. 155(1), 258–263 (2011).
[Crossref]

S. Sridevi, K. S. Vasu, N. Bhat, S. Asokan, and A. K. Sood, “Ultra-sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sens. Actuators B Chem. 223, 481–486 (2016).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B Chem. 173, 1–21 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic diagram of the GMKR. (b) The optical microscope picture of the GMKR and (c) The SEM image of the microfiber coated with GO layers.
Fig. 2
Fig. 2 Schematic diagrams of the coating process of the GKNR.
Fig. 3
Fig. 3 The experimental setup for gas sensing.
Fig. 4
Fig. 4 (a) The transmission spectra of microfiber knot resonator without GO coating and with GO coating. (b) The experiment results of microfiber knot resonator without GO coating for gas sensing.
Fig. 5
Fig. 5 The transmission spectra changes of the GMKR with different concentrations: (a) for NH3 gas and (b) for CO gas
Fig. 6
Fig. 6 (a) Dip shift of GMKR as a function of the gas concentration change. (b) The recoverability of the GMKR.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ λ = ΔL L + Δn n .
Δλ λ = Δn n
Δ σ go (t)=Δ σ max,go cK 1+cK [1exp( 1+cK K kt)]
n go = ( 1 2ωΔ ε 0 ) 1/2 ( - σ go,i + 4 σ go,r 2 + σ go,i 2 ) 1/2

Metrics