Abstract

SrAl2O4 doped with europium and dysprosium is a powerful and widely used afterglow material. Within this material strontium is found in two crystallographic different sites. Due to the similar ion radii and same charge, Eu2+-ions can occupy both sites, resulting in two different Eu2+-ions, one emitting in the blue and one in the green spectral range. The blue emission is thermally quenched at room temperature. In this paper we investigate the energy transfer between different Eu ions depending on the concentration and temperature using two different approaches: lifetime measurements and integrated intensity. We find an activation energy for the thermal quenching of the blue emission of 0.195 ± 0.023 eV and a critical radius for the energy transfer of 3.0 ± 0.5 nm. This results can help in designing better afterglow materials due to the fact that with energy transfer parts of the lost emission in the blue region at room temperature can be converted to the green site.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Crystal structure, photoluminescence and cathodoluminescence of Sr1-xCaxAl2O4 doped with Eu2+

Liping Yu, Daniel den Engelsen, Jürgen Gorobez, George R. Fern, Terry G. Ireland, Chris Frampton, and Jack Silver
Opt. Mater. Express 9(5) 2175-2195 (2019)

Energy transfer induced improvement of luminescent efficiency and thermal stability in phosphate phosphor

Yun Zhao, Chun Che Lin, Yi Wei, Ting-Shan Chan, and Guogang Li
Opt. Express 24(4) 4316-4330 (2016)

Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Botterman and P. F. Smet, “Persistent phosphor SrAl₂O₄:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
    [Crossref] [PubMed]
  2. T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
    [Crossref]
  3. D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
    [Crossref] [PubMed]
  4. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  5. S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
    [Crossref]
  6. J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and P. Novák, “Anomalous Low-Temperature Luminescence of SrAl2O4:Eu2+ Persistent Luminescence Material,” Photon Science 2009 - HASYLAB Annual Reports, Experiment Reports (2009).
  7. J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
    [Crossref]
  8. E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
    [Crossref]
  9. D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).
  10. H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
    [Crossref]
  11. A.-R. Schulze and H.-K. Müller-Buschbaum, “Zur Struktur von monoklinem SrAl2O4,” Zeitung Für Allgemeine Chemie 475, 205–210 (1981).
  12. J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
    [Crossref]
  13. P. Dorenbos, “Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds,” J. Electrochem. Soc. 152(7), H107 (2005).
    [Crossref]
  14. J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
    [Crossref]
  15. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
    [Crossref]
  16. P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
    [Crossref]
  17. D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
    [Crossref]

2016 (1)

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

2015 (2)

J. Botterman and P. F. Smet, “Persistent phosphor SrAl₂O₄:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

2014 (2)

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

2012 (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

2009 (1)

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

2006 (1)

E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
[Crossref]

2005 (2)

P. Dorenbos, “Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds,” J. Electrochem. Soc. 152(7), H107 (2005).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

2004 (1)

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

2002 (1)

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

1997 (1)

S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1981 (1)

A.-R. Schulze and H.-K. Müller-Buschbaum, “Zur Struktur von monoklinem SrAl2O4,” Zeitung Für Allgemeine Chemie 475, 205–210 (1981).

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Bierwagen, J.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Blasse, G.

S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Boon, W. Q.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Botterman, J.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl₂O₄:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

Dorenbos, P.

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

P. Dorenbos, “Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds,” J. Electrochem. Soc. 152(7), H107 (2005).
[Crossref]

Dutczak, D.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Gartmann, N.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Hagemann, H.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Hölsä, J.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Joos, J. J.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Jüstel, T.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Katayama, Y.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

Kieboom, T.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Krupa, J.-C.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Laamanen, T.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

Lastusaari, M.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Legendziewicz, J.

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Li, Y.

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

Lovy, D.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Meijerink, A.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Mejerink, A.

S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
[Crossref]

Müller-Buschbaum, H.-K.

A.-R. Schulze and H.-K. Müller-Buschbaum, “Zur Struktur von monoklinem SrAl2O4,” Zeitung Für Allgemeine Chemie 475, 205–210 (1981).

Murazaki, Y.

E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
[Crossref]

Nakanishi, T.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

Nakazawa, E.

E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
[Crossref]

Niittykoski, J.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Novák, P.

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

Pokrant, S.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Rabouw, F. T.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Ronda, C.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Saito, S.

E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
[Crossref]

Schulze, A.-R.

A.-R. Schulze and H.-K. Müller-Buschbaum, “Zur Struktur von monoklinem SrAl2O4,” Zeitung Für Allgemeine Chemie 475, 205–210 (1981).

Smet, P. F.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl₂O₄:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23(15), A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Tanabe, S.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

Ueda, J.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

Walfort, B.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Wang, D.

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

Wang, M.

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

Ye, S.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Yin, Q.

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

Yoon, S.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

Yu, D. C.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Zhang, Q. Y.

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Chem. Mater. (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

J. Appl. Phys. (1)

E. Nakazawa, Y. Murazaki, and S. Saito, “Mechanism of the persistent phosphorescence in Sr4Al14O25:Eu and SrAl2O4:Eu codoped with rare earth ions,” J. Appl. Phys. 100(11), 113113 (2006).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836 (1953).
[Crossref]

J. Electrochem. Soc. (1)

P. Dorenbos, “Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds,” J. Electrochem. Soc. 152(7), H107 (2005).
[Crossref]

J. Lumin. (1)

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumin. 170, 299–304 (2016).
[Crossref]

J. Mater. Sci. (1)

D. Wang, Q. Yin, Y. Li, and M. Wang, “Concentration quenching of Eu2+ in SrO 6·Al2O3:Eu2+ phosphor,” J. Mater. Sci. 37, 3 (2002).

J. Phys. Chem. Solids (1)

S. H. M. Poort, A. Mejerink, and G. Blasse, “Lifetime measurements in Eu2+-doped host lattices,” J. Phys. Chem. Solids 58(9), 1451–1456 (1997).
[Crossref]

J. Phys. Condens. Matter (1)

P. Dorenbos, “Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds,” J. Phys. Condens. Matter 17(50), 8103–8111 (2005).
[Crossref]

J. Rare Earths (1)

J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, and P. Novák, “Electronic structure of the SrAl2O4:Eu2+ persistent luminescence material,” J. Rare Earths 27(4), 550–554 (2009).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref] [PubMed]

Phys. Rev. B (2)

D. C. Yu, F. T. Rabouw, W. Q. Boon, T. Kieboom, S. Ye, Q. Y. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+−Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90(8), 085147 (2014).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+ -Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 9(12), 2322–2325 (2012).
[Crossref]

Radiat. Meas. (1)

T. Aitasalo, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, and J. Niittykoski, “Effect of temperature on the luminescence processes of SrAl2O4: Eu2+,” Radiat. Meas. 38(4-6), 727–730 (2004).
[Crossref]

Zeitung Für Allgemeine Chemie (1)

A.-R. Schulze and H.-K. Müller-Buschbaum, “Zur Struktur von monoklinem SrAl2O4,” Zeitung Für Allgemeine Chemie 475, 205–210 (1981).

Other (1)

J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, and P. Novák, “Anomalous Low-Temperature Luminescence of SrAl2O4:Eu2+ Persistent Luminescence Material,” Photon Science 2009 - HASYLAB Annual Reports, Experiment Reports (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Excitation and emission spectra of SrAl2O4:Eu2+ doped with 0.01 mol% at different temperatures.
Fig. 2
Fig. 2 Emission spectra SrAl2O4:Eu2+ doped with 0.01 mol% from 10 to 300 K, excited at 370 nm.
Fig. 3
Fig. 3 Thermal quench curves calculated from emission spectra of SrAl2O4:Eu2+ doped with 0.01 mol% from 10 to 300 K. The small increase in total luminescence at 290 and 300 K comes from experimental inaccuracy.
Fig. 4
Fig. 4 Spectral dependent mono-exponential fit of the lifetime of SrAl2O4:Eu2+ doped with 0.01 mol% at 3 K (left) and 300 K (right). The black curves represent the integrated luminescence.
Fig. 5
Fig. 5 Normalized integrated luminescence between 170 K and 520 K of SrAl2O4:Eu2+ doped with 0.01 mol% and 2.0 mol%.
Fig. 6
Fig. 6 Model of the energy transfer and thermal quenching.
Fig. 7
Fig. 7 Emission spectra of the eight different samples at 10 K. The integral under the spectra were normalized.
Fig. 8
Fig. 8 (Left) thermal dependent lifetime of the eight components. Drawn lines are the fitted curves. Right: Concentration (Mean-distance) dependent lifetime at seven different temperatures. Drawn lines are the fitted curves.
Fig. 9
Fig. 9 (Left) thermal dependent intensity of the blue emission of the eight components, calculated by a deconvolution of the two curves. (Right) concentration (Mean-distance) dependent intensity at eight different temperatures.
Fig. 10
Fig. 10 Spectral dependent bi-exponential fit of the lifetime of SrAl2O4:Eu2+ doped with 0.01 mol% at 300 K.
Fig. 11
Fig. 11 Decay of luminescence at 3 K (left) and 300 K (right) respectively of SrAl2O4:Eu2+ doped with 0.01 mol% at 446 nm, fitted with mono and double exponential functions.
Fig. 12
Fig. 12 (Left) thermal dependent intensity of the blue emission of the eight components, calculated by a cut-off filter at 460 nm. Drawn lines are the fitted curves. (Right) concentration (Mean-distance) dependent lifetime at eight different temperatures. Drawn lines are the fitted curves.

Tables (3)

Tables Icon

Table 1 Lifetime of the europium ions at 3 K

Tables Icon

Table 2 fitting results of lifetime and luminescence measurements

Tables Icon

Table 3 Fitting results found with the cut-off method

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k green = k f l g + k q g
k blue = k f l b + k q b +  k ET
I green (r, T) k f l g k f l g + k q g +  k f l g k f l g + k q g * k ET k f l b + k q b + k ET
I blue (r, T) k f l b k f l b + k q b + k ET
I blue (r, T) k f l b k f l b + A b *  e E a b k B *T +J*  e 2r r c
r( Eu 2+ )= V c/m*n 3

Metrics