Abstract

Photoconductivity (PC) of InxGa1-xN has been systematically studied as a function of Indium(In) composition (x) under super-band gap excitation at room temperature. A negative PC has been observed in InN and high In-composition InxGa1-xN, whereas the PC gradually changed to be positive with decreasing x. Transition from negative to positive PC occurred at In-composition of ~0.7. An energy band model is proposed to explain the experimental observation, in which the negative PC is mainly due to that the recombination centers capture the mobile holes and become positively charged. Those positively charged centers then scatter the electrons, decrease their mobility and consequently reduce the conductivity. With decreasing In composition, the recombination centers probably become less and less, leading to a normally positive PC.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical design of GaN/InxGa1-xN/cSi tandem solar cells with triangular diffraction grating

Leo Jyun-Hong Lin and Yih-Peng Chiou
Opt. Express 23(11) A614-A624 (2015)

Carrier dynamics of InxGa1-xN/GaN multiple quantum wells grown on (−201) β-Ga2O3 for bright vertical light emitting diodes

Mufasila Mumthaz Muhammed, Jian Xu, Nimer Wehbe, and Iman Salem Roqan
Opt. Express 26(12) 14869-14878 (2018)

Investigation of optical bistability in a double InxGa1−xN/GaN quantum-dot nanostructure via inter-dot tunneling effect

A. Soltani, R. Nasehi, S. H. Asadpour, M. Mahmoudi, and H. Rahimpour Soleimani
Appl. Opt. 54(10) 2606-2614 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
    [Crossref]
  2. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
    [Crossref]
  3. C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
    [Crossref]
  4. O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [Crossref]
  5. Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
    [Crossref] [PubMed]
  6. J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
    [Crossref] [PubMed]
  7. J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
    [Crossref]
  8. Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
    [Crossref]
  9. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
    [Crossref] [PubMed]
  10. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
    [Crossref]
  11. S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
    [Crossref]
  12. C. H. Qiu and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” Appl. Phys. Lett. 70(15), 1983 (1997).
    [Crossref]
  13. T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
    [Crossref]
  14. P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
    [Crossref]
  15. L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
    [Crossref]
  16. L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
    [Crossref] [PubMed]
  17. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
    [Crossref]
  18. Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
    [Crossref]
  19. J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
    [Crossref]

2014 (1)

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

2013 (1)

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

2012 (3)

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

2011 (2)

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

2010 (1)

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

2008 (1)

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

2007 (2)

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

2004 (2)

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

2003 (1)

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
[Crossref]

2002 (1)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

1998 (1)

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

1997 (3)

C. H. Qiu and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” Appl. Phys. Lett. 70(15), 1983 (1997).
[Crossref]

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Akasaki, I.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Al-Heji, A. A.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

Amano, H.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Arnaudov, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Bernardini, F.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Casey, H.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Chattopadhyay, S.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Chen, G.

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Chen, H. M.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Chen, K. H.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Chen, L. C.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Chen, X.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Chen, Y. F.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Chi, G. C.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Cruz, S.

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Cruz, S. C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

DenBaars, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Dmowski, L. H.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

Egger, W.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Fang, F. F.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Farrell, R. M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Feng, L.

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Ferguson, I.

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Fiorentini, V.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Fujiwara, M.

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Ge, W. K.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Guo, L.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Hahn, C.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Honsberg, C.

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Huang, C. C.

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Hwang, Y. J.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Imai, D.

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Ishitani, Y.

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Iza, M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Jania, O.

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Jeong, H. E.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Keller, B.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Keller, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Kemppinen, A.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Kolbas, R.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Koleske, D. D.

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Kurtz, S.

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Kusakabe, K.

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

Laakso, A.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Lee, J.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Lee, S. R.

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Li, Q.

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Lin, C. F.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Lin, T. Y.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Liszkay, L.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Liu, S. T.

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Lu, C. Y.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Lu, H.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Lu, L. W.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Magnusson, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Matioli, E.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Mishra, U.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Monemar, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Muth, J.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Nakamura, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Nanishi, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Neufeld, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Oila, J.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Pankove, J. I.

C. H. Qiu and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” Appl. Phys. Lett. 70(15), 1983 (1997).
[Crossref]

Paskov, P. P.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Paskova, T.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Qiu, C. H.

C. H. Qiu and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” Appl. Phys. Lett. 70(15), 1983 (1997).
[Crossref]

Saarinen, K.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Saito, Y.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Sang, L. W.

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Schaff, W. J.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Shen, B.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Shen, J. L.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Shih, H. C.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Shmagin, I.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

Speck, J.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Sperr, P.

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

Sumiya, M.

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Suski, T.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

Tang, N.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Toledo, N.

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

Tong, S. C.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Tsai, M. S.

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

Valcheva, E.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

Vanderbilt, D.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Wang, G. T.

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Wang, X. Q.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Wei, P. C.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Weisbuch, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

Wierer, J. J.

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Wu, C. H.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Xu, F.

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Xu, F. J.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Yamaguchi, T.

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
[Crossref]

Yang, M. D.

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Yang, P.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

Yang, X. L.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Yoshikawa, A.

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

Zhang, Y. W.

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Zheng, X. T.

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

Appl. Phys. Lett. (8)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967 (2002).
[Crossref]

C. Neufeld, N. Toledo, S. Cruz, M. Iza, S. DenBaars, and U. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett. 93(14), 143502 (2008).
[Crossref]

O. Jania, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey, B. Keller, U. Mishra, and S. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572 (1997).
[Crossref]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98(2), 021102 (2011).
[Crossref]

C. H. Qiu and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” Appl. Phys. Lett. 70(15), 1983 (1997).
[Crossref]

L. Guo, X. Q. Wang, L. Feng, X. T. Zheng, G. Chen, X. L. Yang, F. Xu, N. Tang, L. W. Lu, W. K. Ge, and B. Shen, “Temperature sensitive photoconductivity observed in InN layers,” Appl. Phys. Lett. 102(7), 072103 (2013).
[Crossref]

J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, “Influence of layer thickness on the formation of In vacancies in InN grown by molecular beam epitaxy,” Appl. Phys. Lett. 84(9), 1486 (2004).
[Crossref]

J. Appl. Phys. (1)

S. T. Liu, X. Q. Wang, G. Chen, Y. W. Zhang, L. Feng, C. C. Huang, F. J. Xu, N. Tang, L. W. Sang, M. Sumiya, and B. Shen, “Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing,” J. Appl. Phys. 110(11), 113514 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys,” Jpn. J. Appl. Phys. 42(Part 1, No. 5A), 2549–2559 (2003).
[Crossref]

Nano Lett. (1)

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

J. J. Wierer, Q. Li, D. D. Koleske, S. R. Lee, and G. T. Wang, “III-nitride core–shell nanowire arrayed solar cells,” Nanotechnology 23(19), 194007 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater. 6(12), 951–956 (2007).
[Crossref] [PubMed]

Phys. Rev. B (4)

F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56(16), R10024 (1997).
[Crossref]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[Crossref]

T. Y. Lin, H. M. Chen, M. S. Tsai, Y. F. Chen, F. F. Fang, C. F. Lin, and G. C. Chi, “Two-dimensional electron gas and persistent photoconductivity in AlxGa1−xN/GaN heterostructures,” Phys. Rev. B 58(20), 13793–13798 (1998).
[Crossref]

P. C. Wei, S. Chattopadhyay, M. D. Yang, S. C. Tong, J. L. Shen, C. Y. Lu, H. C. Shih, L. C. Chen, and K. H. Chen, “Room-temperature negative photoconductivity in degenerate InN thin films with a super gap excitation,” Phys. Rev. B 81(4), 045306 (2010).
[Crossref]

Phys. Sta. Sol. A (1)

Y. Ishitani, M. Fujiwara, D. Imai, K. Kusakabe, and A. Yoshikawa, “Electron and hole scattering dynamics in InN films investigated by infrared measurements,” Phys. Sta. Sol. A 209(1), 56–64 (2012).
[Crossref]

Sci. Rep. (1)

L. Guo, X. Q. Wang, X. T. Zheng, X. L. Yang, F. J. Xu, N. Tang, L. W. Lu, W. K. Ge, B. Shen, L. H. Dmowski, and T. Suski, “Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement,” Sci. Rep. 4, 4371 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 AFM images of InxGa1-xN films in a scanned area of 3 μm × 3 μm with different In fraction: (a) 0.58, (b) 0.7, (c) 0.84, (d) 0.92, and (e) 1. (f) The RMS value of the InxGa1-xN layer as a function of In fraction. The In droplets were removed by dilute HCl solution before the AFM measurement.
Fig. 2
Fig. 2 Electron mobility and residual electron concentration as a function of In composition for the InxGa1-xN samples at room temperature.
Fig. 3
Fig. 3 Photocurrent transient response of the InxGa1-xN with different In-fractions at room temperature.
Fig. 4
Fig. 4 The proposed energy-level diagrams showing electronic transitions responsible for the transient photocurrent, (a) and (b) correspond to the InxGa1xN samples with x > xc and x < xc.
Fig. 5
Fig. 5 Residual electron concentration (circle) and mobility (square) in dark condition (open) and under illumination (solid) at temperatures from 100 to 300 K of (a)In0.92Ga0.08N and (b) In0.58Ga0.42N.

Metrics