Abstract

Persistent phosphors, also called glow-in-the-dark materials, are a specific class of luminescent materials having the unique ability to emit light long after the excitation ended. For many applications in the visible spectrum, such as in emergency signage or road marks, the storage capacity of the Eu2+ based phosphors should further be increased. In this work we show that the excitation of the europium center in Sr2MgSi2O7:Eu,Dy by near-UV light not only leads to charge trapping, but also to optically stim-ulated release of previously trapped charges and subsequent luminescence (OSL). The experimental evidence for OSL at the excitation wavelength is supported by a model assuming local trapping and an additional detrapping rate proportional to the excitation intensity. In this way, the characteristics of both the charging and afterglow behaviour can be explained. The storage capacity of a persistent phosphor is thus not only controlled by the trap density and the trap depth, but also by the sensitivity to optically stimulated detrapping at the excitation wavelength.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution

Jonas Botterman and Philippe F. Smet
Opt. Express 23(15) A868-A881 (2015)

Feature issue introduction: persistent and photostimulable phosphors – an established research field with clear challenges ahead

Philippe F. Smet, Bruno Viana, Setsuhisa Tanabe, Mingying Peng, Jorma Hölsä, and Wei Chen
Opt. Mater. Express 6(4) 1414-1419 (2016)

Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
    [Crossref]
  2. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
    [Crossref]
  3. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
    [Crossref]
  4. K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
    [Crossref]
  5. D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express 17, 358–364 (2009).
    [Crossref] [PubMed]
  6. D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010)
    [Crossref] [PubMed]
  7. J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23, A868–A881 (2015).
    [Crossref] [PubMed]
  8. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
    [Crossref]
  9. T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
    [Crossref] [PubMed]
  10. Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
    [Crossref] [PubMed]
  11. D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
    [Crossref]
  12. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
    [Crossref]
  13. P. Dorenbos, “Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17, 8103–8111 (2005).
  14. A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
    [Crossref]
  15. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
    [Crossref]
  16. J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
    [Crossref]
  17. H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
    [Crossref]
  18. E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
    [Crossref]
  19. P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
    [Crossref]
  20. Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
    [Crossref]
  21. A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
    [Crossref]
  22. J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3, 787–793 (2013).
    [Crossref]
  23. Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
    [Crossref]
  24. H. F. Brito, J. Holsa, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamki, and L. C. V. Rodrigues, “Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study,” Opt. Mater. Express 2, 287–293 (2012).
    [Crossref]
  25. H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
    [Crossref]
  26. Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
    [Crossref]
  27. S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
    [Crossref]
  28. J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput. Sci. Eng. 9, 90–95 (2007).
    [Crossref]
  29. H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
    [Crossref]
  30. S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27, 625–661 (1997).
    [Crossref]
  31. R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
    [Crossref]
  32. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152, H107–H110 (2005).
    [Crossref]
  33. D. Jia, “Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+,Dy3+,” Opt. Mater. 22, 65–69 (2003).
    [Crossref]
  34. M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).
  35. F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
    [Crossref]
  36. V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
    [Crossref]
  37. P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
    [Crossref]
  38. A.J.J. Bos, “Theory of thermoluminescence,” Radiat. Meas. 41, S45–S56 (2007).
    [Crossref]
  39. P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+,” Phys. Status Solidi B 242, R7–R9 (2005).
    [Crossref]
  40. C. R. Ronda, Luminescence, from Theory to Applications (Wiley, 2007)
  41. S. Shionoya, Phosphor Handbook (CRC Press, 2006)
  42. S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
    [Crossref]
  43. N.A. Spooner, “On the optical dating signal from quartz,” Radiat. Meas. 23, 593–600 (1994).
    [Crossref]

2016 (2)

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

2015 (1)

2014 (7)

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
[Crossref]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
[Crossref]

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
[Crossref]

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

2013 (5)

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
[Crossref]

J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3, 787–793 (2013).
[Crossref]

2012 (6)

M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

H. F. Brito, J. Holsa, T. Laamanen, M. Lastusaari, M. Malkamaki, and L. C. V. Rodrigues, “Persistent luminescence mechanisms: human imagination at work,” Opt. Mater. Express 2, 371–381 (2012).
[Crossref]

R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
[Crossref]

H. F. Brito, J. Holsa, H. Jungner, T. Laamanen, M. Lastusaari, M. Malkamki, and L. C. V. Rodrigues, “Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: a thermoluminescence study,” Opt. Mater. Express 2, 287–293 (2012).
[Crossref]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
[Crossref]

2011 (3)

S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

2010 (3)

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010)
[Crossref] [PubMed]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

2009 (1)

2007 (3)

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput. Sci. Eng. 9, 90–95 (2007).
[Crossref]

A.J.J. Bos, “Theory of thermoluminescence,” Radiat. Meas. 41, S45–S56 (2007).
[Crossref]

2005 (4)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+,” Phys. Status Solidi B 242, R7–R9 (2005).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152, H107–H110 (2005).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17, 8103–8111 (2005).

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

2003 (1)

D. Jia, “Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+,Dy3+,” Opt. Mater. 22, 65–69 (2003).
[Crossref]

1997 (2)

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27, 625–661 (1997).
[Crossref]

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

1994 (1)

N.A. Spooner, “On the optical dating signal from quartz,” Radiat. Meas. 23, 593–600 (1994).
[Crossref]

Akselrod, M. S.

E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
[Crossref]

Andersen, M. T.

M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

Avci, N.

Basavaraju, N.

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

Bessiere, A.

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

Bessodes, M.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Bierwagen, J.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Binet, L.

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

Blohm, L.

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

Bos, A. J. J.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

Bos, A.J.J.

A.J.J. Bos, “Theory of thermoluminescence,” Radiat. Meas. 41, S45–S56 (2007).
[Crossref]

Bøtter-Jensen, L.

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

Botterman, J.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23, A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Brengle, M.

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

Brito, H. F.

Chanac, C.

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Chen, R.

R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
[Crossref]

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27, 625–661 (1997).
[Crossref]

Chen, X. S.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Colbert, S.C.

S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

De Clercq, O. Q.

P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
[Crossref]

Dienard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Dobrowolska, A.

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
[Crossref]

Dong, Y. Z.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

Dorenbos, P.

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

P. Dorenbos, “Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17, 8103–8111 (2005).

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+,” Phys. Status Solidi B 242, R7–R9 (2005).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152, H107–H110 (2005).
[Crossref]

Duan, H.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

Duller, G. A. T.

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

Fu, Y.

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Gartmann, N.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Gourier, D.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Guralnik, B.

M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).

Hagemann, H.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Holsa, J.

Hu, Y.

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Hu, Y. H.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

Huang, Y.

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

Hunter, J. D.

J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput. Sci. Eng. 9, 90–95 (2007).
[Crossref]

Jain, M.

M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).

Jia, D.

D. Jia, “Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+,Dy3+,” Opt. Mater. 22, 65–69 (2003).
[Crossref]

Jin, Y.

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Joos, J. J.

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
[Crossref]

Ju, G.

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Jungner, H.

Katayama, Y.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Laamanen, T.

Larsen, N. A.

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

Lastusaari, M.

Lawless, J. L.

R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
[Crossref]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Leblans, P.

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

Liu, F.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
[Crossref]

Lovy, D.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Lu, Y.-Y.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
[Crossref]

Maitrejean, S.

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Malkamaki, M.

Malkamki, M.

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

Mayonado, G.

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

McKeever, S. W. S.

E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
[Crossref]

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27, 625–661 (1997).
[Crossref]

McKeever, S.W.S.

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

Mu, Z.

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Muramaya, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Pagonis, V.

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
[Crossref]

Pan, Z.

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
[Crossref]

Pelle, F.

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010)
[Crossref] [PubMed]

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express 17, 358–364 (2009).
[Crossref] [PubMed]

P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
[Crossref]

Pokrant, S.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Poolton, N. R. J.

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

Priolkar, K. R.

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

Richard, C.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Rodrigues, L. C. V.

Ronda, C. R.

C. R. Ronda, Luminescence, from Theory to Applications (Wiley, 2007)

Scherman, D.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Sharma, S. K.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

Shinoda, T.

Shionoya, S.

S. Shionoya, Phosphor Handbook (CRC Press, 2006)

Smet, P. F.

J. Botterman and P. F. Smet, “Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution,” Opt. Express 23, A868–A881 (2015).
[Crossref] [PubMed]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
[Crossref]

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

D. Poelman and P. F. Smet, “Photometry in the dark: time dependent visibility of low intensity light sources,” Opt. Express 18, 26293–26299 (2010)
[Crossref] [PubMed]

D. Poelman, N. Avci, and P. F. Smet, “Measured luminance and visual appearance of multi-color persistent phosphors,” Opt. Express 17, 358–364 (2009).
[Crossref] [PubMed]

P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
[Crossref]

Spooner, N.A.

N.A. Spooner, “On the optical dating signal from quartz,” Radiat. Meas. 23, 593–600 (1994).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

Tanabe, S.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3, 787–793 (2013).
[Crossref]

Teston, E.

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Ueda, J.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

J. Ueda, T. Shinoda, and S. Tanabe, “Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics,” Opt. Mater. Express 3, 787–793 (2013).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
[Crossref]

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
[Crossref]

van der Kolk, E.

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

van der Walt, S.

S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Vandenbroucke, D.

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

Varoquaux, G.

S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

Viana, B.

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Walfort, B.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Wallinga, J.

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Willems, P.

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

Woglam, P.

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

Yoon, S.

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

Yukihara, E. G.

E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
[Crossref]

Zhuang, Y.

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Dienard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phopshors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17, 3904–3912, (2005)
[Crossref]

Comput. Sci. Eng. (2)

S. van der Walt, S.C. Colbert, and G. Varoquaux, “The NumPy array: a structure for efficient numerical computation,” Comput. Sci. Eng. 13, 22–30 (2011).
[Crossref]

J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput. Sci. Eng. 9, 90–95 (2007).
[Crossref]

J. Electrochem. Soc. (2)

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152, H107–H110 (2005).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Muramaya, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+Dy3+,” J. Electrochem. Soc. 143, 2670 (1996).
[Crossref]

J. Lumines. (2)

H. Hagemann, D. Lovy, S. Yoon, S. Pokrant, N. Gartmann, B. Walfort, and J. Bierwagen, “Wavelength dependent loading of traps in the persistent phosphor SrAl2O4:Eu2+, Dy3+,” J. Lumines. 170, 299–304 (2016).
[Crossref]

P. F. Smet, K. Van den Eeckhout, A. J. J. Bos, E. van der Kolk, and P. Dorenbos, “Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M = Ca, Sr, Ba) persistent phosphors,” J. Lumines. 132, 682–689 (2012).
[Crossref]

J. Mater. Chem. C (1)

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga1−x Alx)2O4:Cr,Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C 1, 7849–7855 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

D. Gourier, A. Bessiere, S. K. Sharma, L. Binet, B. Viana, N. Basavaraju, and K. R. Priolkar, “Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate,” J. Phys. Chem. Solids 75, 826–837 (2014).
[Crossref]

J. Phys. D-Appl. Phys. (2)

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce, Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D-Appl. Phys. 47, 335301 (2014).
[Crossref]

H. Duan, Y. Z. Dong, Y. Huang, Y. H. Hu, and X. S. Chen, “First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material,” J. Phys. D-Appl. Phys. 49, 025304 (2016).
[Crossref]

J. Phys.: Condens. Matter (2)

M. Jain, B. Guralnik, and M. T. Andersen, “Stimulated luminescence emission from localized recombination in randomly distributed defects,” J. Phys.: Condens. Matter 24, 385402 (2012).

P. Dorenbos, “Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds,” J. Phys.: Condens. Matter 17, 8103–8111 (2005).

Mater. Lett. (1)

Y. Jin, Y. Hu, Y. Fu, Z. Mu, and G. Ju, “Reversible white and light gray photochromism in europium doped Zn2GeO4,” Mater. Lett. 134, 187–189 (2014).
[Crossref]

Materials (3)

P. Leblans, D. Vandenbroucke, and P. Willems, “Storage phosphors for medical imaging,” Materials 4, 1034–1086 (2011).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials 6, 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials 3, 2536–2566 (2010).
[Crossref]

Nat. Mater. (2)

T. Maldiney, A. Bessiere, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13, 418–426 (2014).
[Crossref] [PubMed]

Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.,” Nat. Mater. 11, 58–63 (2012).
[Crossref]

Opt. Express (3)

Opt. Mater. (2)

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36, 1907–1912 (2014).
[Crossref]

D. Jia, “Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+,Dy3+,” Opt. Mater. 22, 65–69 (2003).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. B (3)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87, 045126 (2013).
[Crossref]

J. Botterman, J. J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B 90, 085147 (2014).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes,” Phys. Rev. B 84, 085140 (2011).
[Crossref]

Phys. Status Solidi B (1)

P. Dorenbos, “Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+,Dy3+,” Phys. Status Solidi B 242, R7–R9 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

Q. le Masne de Chermont, C. Chanac, J. Seguin, F. Pelle, S. Maitrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U. S. A. 104, 9266–9271 (2007).
[Crossref] [PubMed]

Radiat. Meas. (8)

E. G. Yukihara, S. W. S. McKeever, and M. S. Akselrod, “State of art: optically stimulated luminescence dosimetry - Frontiers of future research,” Radiat. Meas. 71, 15–24 (2014).
[Crossref]

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27, 625–661 (1997).
[Crossref]

R. Chen, J. L. Lawless, and V. Pagonis, “Two-stage thermal stimulation of thermoluminescence,” Radiat. Meas. 47, 1–5 (2012).
[Crossref]

A. J. J. Bos, N. R. J. Poolton, J. Wallinga, A. Bessiere, and P. Dorenbos, “Energy levels in YPO4:Ce3+,Sm3+ studied by thermally and optically stimulated luminescence,” Radiat. Meas. 45, 343–346 (2010).
[Crossref]

V. Pagonis, L. Blohm, M. Brengle, G. Mayonado, and P. Woglam, “Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-local transition (SLT) model”, Radiat. Meas. 51, 40–47 (2013).
[Crossref]

A.J.J. Bos, “Theory of thermoluminescence,” Radiat. Meas. 41, S45–S56 (2007).
[Crossref]

S.W.S. McKeever, L. Bøtter-Jensen, N. A. Larsen, and G. A. T. Duller, “Temperature dependence of OSL decay curves: experimental and theoretical aspects,” Radiat. Meas. 27, 161–170 (1997).
[Crossref]

N.A. Spooner, “On the optical dating signal from quartz,” Radiat. Meas. 23, 593–600 (1994).
[Crossref]

Other (3)

C. R. Ronda, Luminescence, from Theory to Applications (Wiley, 2007)

S. Shionoya, Phosphor Handbook (CRC Press, 2006)

P. F. Smet, K. Van den Eeckhout, O. Q. De Clercq, and D. Poelman, “Chapter 274 - Persistent Phosphors,” in Handbook on the Physics and Chemistry of Rare Earths, J.-C. Bünzli and K. P. Vitalij, eds. (Elsevier, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 One-to-one relation between luminescent center and nearby trap(s). The arrows show possible trapping routes, each route characterized by a trapping rate pij.
Fig. 2
Fig. 2 The model describing the local transitions for the case each system consists of one trap only.
Fig. 3
Fig. 3 Influence of the excitation intensity on charging, afterglow and TL measurement for Sr2MgSi2O7:Eu,Dy, at a charging temperature of 273 K. The TL measurement started at t = 2700 s.
Fig. 4
Fig. 4 Reflected intensity of the excitation light as function of time for Sr2MgSi2O7:Eu,Dy at 273 K for different excitation intensities.
Fig. 5
Fig. 5 The local model with OSL added and for which locality is also assumed for the OSL trap release.
Fig. 6
Fig. 6 Fitting results of the thermal barrier for trapping, thermal quenching barrier and trap depth as function of temperature.
Fig. 7
Fig. 7 Fit results (dashed lines) based on α = 228, compared to measurements (full lines) as function of charging temperature. The small peak on the emission intensity at the begin of charging, clearly seen at low temperatures, is due to the thermal relaxation of the LED excitation source after switching on.
Fig. 8
Fig. 8 Using the fit results from Table 1, a calculation is done for variation of the excitation intensity pe at a charging temperature of 273 K. The simulated dynamic behaviour is similar to what is observed in the experiment of Fig. 3.
Fig. 9
Fig. 9 (top) Emission intensity of Sr2MgSi2O7:Eu,Dy for TL following the charging at 253 K (green curve) and with additional excitation for 2500 s at 213 K between charging and TL (red curve). (middle) Temperature profiles for both experiments and (bottom) TL glow curves as a function of temperature. When charging the phosphor at 213 K no appreciable TL glow curve is noticed (blue curve), showing that no trapping occurs at this temperature.
Fig. 10
Fig. 10 Fading experiment showing that only 3% of the trapped charges are released at a temperature of 213 K, when the duration at low temperature is increased by 2500 s (red curve compared to green curve). Excitation was on during the initial 2500 s and then remained off for both experiments.

Tables (1)

Tables Icon

Table 1 Parameter fit results for a local OSL model fit to Sr2MgSi2O7:Eu,Dy.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d m e d t = p e ( M m e m ) ( p m + p n r ) m e + p 2 m p 1 m e = ( p e + p m + p n r + p 1 ) m e + ( p 2 p e ) m + p e M d m d t = p 1 m e p 2 m
I ( t ) = p m m e ( t )
m c h ( t ) = p e M v 2 y v λ 1 ( 1 e λ 1 t ) v 1 + p e M v 1 y v λ 2 ( 1 e λ 2 t ) v 2
m a g ( t ) = c 1 e λ 1 t v 1 + c 2 e λ 2 t v 2 c 1 e λ 1 t v 1 + c 2 e λ 2 t v 2
d m e d t = ( p e + p m + p n r + p 1 ) m e + ( p 2 + α p e p e ) m + p e M d m d t = p 1 m e ( p 2 + α p e ) m

Metrics