Abstract

We introduce the PC- and COP-cladded As2Se3 microwires, two highly nonlinear microwires optimized to operate in the wavelength range of 1.85 µm to 2.20 µm. Like the previously reported PMMA-cladded As2Se3 microwire, the PC- and COP-cladded microwires benefit of a large waveguide nonlinear parameter and engineerable chromatic dispersion level, but without the absorption features of PMMA in the 1.85 μm to 2.20 μm range. The design rules and fabrication technique of each polymer-cladded microwire is provided. COP- and PMMA-cladded microwires with identical length and waveguide nonlinearity parameter are also operated in the nonlinear regime, highlighting features of self-phase modulation, four-wave mixing and Raman scattering in the 1.85 μm to 2.20 μm range.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly nonlinear hybrid AsSe-PMMA microtapers

Chams Baker and Martin Rochette
Opt. Express 18(12) 12391-12398 (2010)

Chalcogenide optical microwires cladded with fluorine-based CYTOP

Lizhu Li, Nurmemet Abdukerim, and Martin Rochette
Opt. Express 24(17) 18931-18937 (2016)

Mid-infrared supercontinuum generation from 2 to 14  μm in arsenic- and antimony-free chalcogenide glass fibers

Arnaud Lemière, Frédéric Désévédavy, Pierre Mathey, Paul Froidevaux, Grégory Gadret, Jean-Charles Jules, Christophe Aquilina, Bertrand Kibler, Pierre Béjot, Franck Billard, Olivier Faucher, and Frédéric Smektala
J. Opt. Soc. Am. B 36(2) A183-A192 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Faust, Modern Chemical Techniques (CRC Press, 1995).
  2. C. Markos and O. Bang, “Nonlinear label-free biosensing with high sensitivity using As2S3 chalcogenide tapered fiber,” Opt. Lett. 33(13), 2892–2898 (2015).
  3. B. Pal, Frontiers in Guided Wave Optics and Optoelectronics (InTech, 2010)
  4. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  5. C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  6. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]
  7. V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [Crossref]
  8. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
    [Crossref] [PubMed]
  9. R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3(1), 21–51 (1980).
    [Crossref]
  10. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photonics Technol. Lett. 4(1), 69–72 (1992).
    [Crossref]
  11. K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
    [Crossref]
  12. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [Crossref] [PubMed]
  13. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  14. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref] [PubMed]
  15. Amorphous materials, Inc., “AMTIR-2: Arsenic selenide glass AsSe,” http://www.amorphousmaterials.com/products/ .
  16. Amorphous materials, Inc., “AMTIR-6: Arsenic trisulfide glass As2S3,” http://www.amorphousmaterials.com/products/ .
  17. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [Crossref] [PubMed]
  18. A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
    [Crossref] [PubMed]
  19. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [Crossref] [PubMed]
  20. C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode-PMMA fibers,” IEEE Photonics J. 4(3), 960–969 (2012).
    [Crossref]
  21. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
    [Crossref] [PubMed]
  22. R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
    [Crossref] [PubMed]
  23. R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
    [Crossref] [PubMed]
  24. R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20(9), 9572–9580 (2012).
    [Crossref] [PubMed]
  25. R. Ahmad and M. Rochette, “All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire,” IEEE J. Sel. Top. Quantum Electron. 20(5), 299–304 (2014).
    [Crossref]
  26. A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
    [Crossref] [PubMed]
  27. A. Al-Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Mode-locked fiber laser based on chalcogenide microwires,” Opt. Lett. 40(18), 4309–4312 (2015).
    [Crossref] [PubMed]
  28. J. C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39(3), 482–485 (2014).
    [Crossref] [PubMed]
  29. A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
    [Crossref]
  30. E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
    [Crossref]
  31. J. Málek and J. Shánělová, “Structural relaxation of As2Se3 glass and viscosity of supercooled liquid,” J. Non-Cryst. Solids 351(43-45), 3458–3467 (2005).
    [Crossref]
  32. D. W. Henderson and D. G. Ast, “Viscosity and crystallization kinetics of As2Se3,” J. Non-Cryst. Solids 64(1–2), 43–70 (1984).
    [Crossref]
  33. A. S. Tverjanovich, “Temperature dependence of the viscosity of chalcogenide glass-forming melts,” Glass Phys. Chem. 29(6), 532–536 (2003).
    [Crossref]
  34. T. Tofteber and E. Andreassen, “Injection moulding of microfeatured parts,” Proceedings of the Polymer Processing Society 24th Annual Meeting (2008).
  35. P. Lomellini, “Viscosity-temperature relationships of a polycarbonate melt: Williams-Landel-Ferry versus Arrhenius behavior,” Makromol. Chem. 193(1), 69–79 (1992).
    [Crossref]
  36. C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
    [Crossref]
  37. W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer Science & Business Media, 2006)
  38. X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
    [Crossref]
  39. W. Fred and J. R. Billmeyer, Textbook of Polymer Science (John Wiley and Sons, 1984).
  40. J. E. Mark, Physical Properties of Polymers Handbook (AIP Press, 1996).
  41. L. P. Zeon Chemicals, “The lowest autofluorescent injection-moldable plastic,” http://www.zeonex.com/life-sciences.aspx .
  42. M. N. Eakins, “New plastics for old vials,” Bioprocess Int. 3, 52–58 (2005).
  43. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
    [Crossref] [PubMed]
  44. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  45. G.-S. Plastic Optics, “Transmission curves,” http://www.gsoptics.com/transmission-curves/ .

2015 (4)

2014 (4)

J. C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39(3), 482–485 (2014).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire,” IEEE J. Sel. Top. Quantum Electron. 20(5), 299–304 (2014).
[Crossref]

C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

2013 (2)

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (1)

2009 (2)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
[Crossref] [PubMed]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2007 (2)

2006 (1)

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

2005 (2)

M. N. Eakins, “New plastics for old vials,” Bioprocess Int. 3, 52–58 (2005).

J. Málek and J. Shánělová, “Structural relaxation of As2Se3 glass and viscosity of supercooled liquid,” J. Non-Cryst. Solids 351(43-45), 3458–3467 (2005).
[Crossref]

2003 (2)

A. S. Tverjanovich, “Temperature dependence of the viscosity of chalcogenide glass-forming melts,” Glass Phys. Chem. 29(6), 532–536 (2003).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2000 (1)

1994 (1)

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

1992 (3)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photonics Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

P. Lomellini, “Viscosity-temperature relationships of a polycarbonate melt: Williams-Landel-Ferry versus Arrhenius behavior,” Makromol. Chem. 193(1), 69–79 (1992).
[Crossref]

1989 (1)

1984 (1)

D. W. Henderson and D. G. Ast, “Viscosity and crystallization kinetics of As2Se3,” J. Non-Cryst. Solids 64(1–2), 43–70 (1984).
[Crossref]

1982 (1)

1980 (1)

R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3(1), 21–51 (1980).
[Crossref]

Aggarwal, I. D.

Ahmad, R.

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

R. Ahmad and M. Rochette, “All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire,” IEEE J. Sel. Top. Quantum Electron. 20(5), 299–304 (2014).
[Crossref]

J. C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39(3), 482–485 (2014).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20(9), 9572–9580 (2012).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
[Crossref] [PubMed]

Al-Kadry, A.

Andreassen, E.

T. Tofteber and E. Andreassen, “Injection moulding of microfeatured parts,” Proceedings of the Polymer Processing Society 24th Annual Meeting (2008).

Ashkin, A.

Ast, D. G.

D. W. Henderson and D. G. Ast, “Viscosity and crystallization kinetics of As2Se3,” J. Non-Cryst. Solids 64(1–2), 43–70 (1984).
[Crossref]

Bailly, C.

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

Baker, C.

Baker, N. J.

Bang, O.

Beugnot, J. C.

Botineau, J.

Byer, R. L.

C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Cheong, S. W.

Choi, D. Y.

Coates, P.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Dekker, S. A.

Digonnet, M. J. F.

C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Dot, A.

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

Eakins, M. N.

M. N. Eakins, “New plastics for old vials,” Bioprocess Int. 3, 52–58 (2005).

Eggleton, B. J.

El Amraoui, M.

Finsterbusch, K.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Fu, L.

Fu, L. B.

Geng, J.

Hall, K. L.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

He, J.

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

Henderson, D. W.

D. W. Henderson and D. G. Ast, “Viscosity and crystallization kinetics of As2Se3,” J. Non-Cryst. Solids 64(1–2), 43–70 (1984).
[Crossref]

Hudson, D. D.

Hwang, H. Y.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photonics Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Jackson, S. D.

Jennewein, T.

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

Jiang, S.

Judge, A. C.

Katsufuji, T.

Kelly, A.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Keunings, R.

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Lamont, M. R. E.

Laude, V.

Lenz, G.

Li, E.

Li, L.

A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
[Crossref] [PubMed]

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

Lin, X.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Lines, M. E.

Liu, C.

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

Livas, J. C.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

Lomellini, P.

P. Lomellini, “Viscosity-temperature relationships of a polycarbonate melt: Williams-Landel-Ferry versus Arrhenius behavior,” Makromol. Chem. 193(1), 69–79 (1992).
[Crossref]

Luo, T.

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Maillotte, H.

Málek, J.

J. Málek and J. Shánělová, “Structural relaxation of As2Se3 glass and viscosity of supercooled liquid,” J. Non-Cryst. Solids 351(43-45), 3458–3467 (2005).
[Crossref]

Markos, C.

Matsas, V.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Messaddeq, Y.

Meyer-Scott, E.

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

Moss, D. J.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Newson, T.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Nguyen, H. C.

Nishii, J.

North, T.

Payne, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Rauschenbach, K. A.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

Raybon, G.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

Ren, D.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Richardson, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Rochette, M.

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
[Crossref] [PubMed]

A. Al-Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Mode-locked fiber laser based on chalcogenide microwires,” Opt. Lett. 40(18), 4309–4312 (2015).
[Crossref] [PubMed]

J. C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39(3), 482–485 (2014).
[Crossref] [PubMed]

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

R. Ahmad and M. Rochette, “All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire,” IEEE J. Sel. Top. Quantum Electron. 20(5), 299–304 (2014).
[Crossref]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Chalcogenide optical parametric oscillator,” Opt. Express 20(9), 10095–10099 (2012).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires,” Opt. Express 20(9), 9572–9580 (2012).
[Crossref] [PubMed]

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode-PMMA fibers,” IEEE Photonics J. 4(3), 960–969 (2012).
[Crossref]

C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
[Crossref] [PubMed]

Ruby, C. W.

C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sanghera, J. S.

Shánelová, J.

J. Málek and J. Shánělová, “Structural relaxation of As2Se3 glass and viscosity of supercooled liquid,” J. Non-Cryst. Solids 351(43-45), 3458–3467 (2005).
[Crossref]

Shaw, L. B.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Slusher, R. E.

Spälter, S.

Stolen, R. H.

Sylvestre, T.

Ta’eed, V.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photonics Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

Tofteber, T.

T. Tofteber and E. Andreassen, “Injection moulding of microfeatured parts,” Proceedings of the Polymer Processing Society 24th Annual Meeting (2008).

Tverjanovich, A. S.

A. S. Tverjanovich, “Temperature dependence of the viscosity of chalcogenide glass-forming melts,” Glass Phys. Chem. 29(6), 532–536 (2003).
[Crossref]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, K.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Wang, Q.

Woodhead, M.

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

Yamagishi, T.

Yamashita, T.

Yeom, D. I.

Zimmermann, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T. Jennewein, “Power-efficient production of photon pairs in a tapered chalcogenide microwire,” Appl. Phys. Lett. 106(8), 081111 (2015).
[Crossref]

Bioprocess Int. (1)

M. N. Eakins, “New plastics for old vials,” Bioprocess Int. 3, 52–58 (2005).

Electron. Lett. (1)

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Fiber Integr. Opt. (1)

R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3(1), 21–51 (1980).
[Crossref]

Glass Phys. Chem. (1)

A. S. Tverjanovich, “Temperature dependence of the viscosity of chalcogenide glass-forming melts,” Glass Phys. Chem. 29(6), 532–536 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Ahmad and M. Rochette, “All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire,” IEEE J. Sel. Top. Quantum Electron. 20(5), 299–304 (2014).
[Crossref]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

IEEE Photonics J. (1)

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multimode-PMMA fibers,” IEEE Photonics J. 4(3), 960–969 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photonics Technol. Lett. 4(1), 69–72 (1992).
[Crossref]

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6(9), 1130–1132 (1994).
[Crossref]

J. Appl. Polym. Sci. (1)

X. Lin, A. Kelly, D. Ren, M. Woodhead, P. Coates, and K. Wang, “Geometrical dependence of viscosity of polymethylmethacrylate melt in capillary flow,” J. Appl. Polym. Sci. 130(5), 3384–3394 (2013).
[Crossref]

J. Non-Cryst. Solids (2)

J. Málek and J. Shánělová, “Structural relaxation of As2Se3 glass and viscosity of supercooled liquid,” J. Non-Cryst. Solids 351(43-45), 3458–3467 (2005).
[Crossref]

D. W. Henderson and D. G. Ast, “Viscosity and crystallization kinetics of As2Se3,” J. Non-Cryst. Solids 64(1–2), 43–70 (1984).
[Crossref]

Macromolecules (1)

C. Liu, J. He, R. Keunings, and C. Bailly, “New linearized relation for the universal viscosity-temperature behavior of polymer melts,” Macromolecules 39(25), 8867–8869 (2006).
[Crossref]

Makromol. Chem. (1)

P. Lomellini, “Viscosity-temperature relationships of a polycarbonate melt: Williams-Landel-Ferry versus Arrhenius behavior,” Makromol. Chem. 193(1), 69–79 (1992).
[Crossref]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Fiber Technol. (1)

C. W. Ruby, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Opt. Lett. (10)

Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
[Crossref] [PubMed]

C. Markos and O. Bang, “Nonlinear label-free biosensing with high sensitivity using As2S3 chalcogenide tapered fiber,” Opt. Lett. 33(13), 2892–2898 (2015).

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
[Crossref] [PubMed]

R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7(10), 512–514 (1982).
[Crossref] [PubMed]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity,” Opt. Lett. 37(21), 4549–4551 (2012).
[Crossref] [PubMed]

A. Al-Kadry, L. Li, M. El Amraoui, T. North, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires,” Opt. Lett. 40(20), 4687–4690 (2015).
[Crossref] [PubMed]

A. Al-Kadry, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Mode-locked fiber laser based on chalcogenide microwires,” Opt. Lett. 40(18), 4309–4312 (2015).
[Crossref] [PubMed]

J. C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39(3), 482–485 (2014).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. Dot, E. Meyer-Scott, R. Ahmad, M. Rochette, and T. Jennewein, “Converting one photon into two via four-wave mixing in optical fibers,” Phys. Rev. A 90(4), 043808 (2014).
[Crossref]

Other (11)

C. Faust, Modern Chemical Techniques (CRC Press, 1995).

T. Tofteber and E. Andreassen, “Injection moulding of microfeatured parts,” Proceedings of the Polymer Processing Society 24th Annual Meeting (2008).

Amorphous materials, Inc., “AMTIR-2: Arsenic selenide glass AsSe,” http://www.amorphousmaterials.com/products/ .

Amorphous materials, Inc., “AMTIR-6: Arsenic trisulfide glass As2S3,” http://www.amorphousmaterials.com/products/ .

B. Pal, Frontiers in Guided Wave Optics and Optoelectronics (InTech, 2010)

W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer Science & Business Media, 2006)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

G.-S. Plastic Optics, “Transmission curves,” http://www.gsoptics.com/transmission-curves/ .

W. Fred and J. R. Billmeyer, Textbook of Polymer Science (John Wiley and Sons, 1984).

J. E. Mark, Physical Properties of Polymers Handbook (AIP Press, 1996).

L. P. Zeon Chemicals, “The lowest autofluorescent injection-moldable plastic,” http://www.zeonex.com/life-sciences.aspx .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Logarithmic plot of viscosity of As2Se3, PC, COP and PMMA at different temperatures.
Fig. 2
Fig. 2 (a) Schematic of the polymer-cladded As2Se3 preform fabrication setup. (b) photograph of extruded preform. (c) schematic of hybrid fiber fabrication setup. (d) reflection optical micrograph of cross section of hybrid fiber. (e) reflection optical micrograph of the As2Se3-COP core-cladding.
Fig. 3
Fig. 3 (a) Schematic of polymer-cladded As2Se3 microtaper fabrication setup. (b) schematic of the polymer-cladded As2Se3 microtaper coupled to SMF-28 fiber. (c) photograph of a microtaper.
Fig. 4
Fig. 4 (a) Chromatic dispersion β2 and waveguide nonlinearity parameter γ (b) confinement factor Γ of the PC-, COP 480R- and PMMA-cladded microwires as a function of the As2Se3 core diameter at an operation wavelength of 1.94 µm.
Fig. 5
Fig. 5 (a) Transmission spectra of PC, COP 1020R and PMMA. (b) SMF-28 to SMF-28 transmittance of the PC-, COP 480R-, COP 1020R- and PMMA-cladded microwires with diameter ϕAsSe = 1.5 µm and length Lw = 10 cm.
Fig. 6
Fig. 6 Nonlinearly broadened spectra of COP 480R- and PMMA-cladded microwires with length Lw = 10 cm and γ = 21.7 W−1m−1. The peak pump power is 14.1 W and is centered at a wavelength of 1.94 µm. Transmission spectra are also given for reference

Tables (2)

Tables Icon

Table 1 Glass transition temperature and refractive index at 1.94 µm of chalcogenide and polymers

Tables Icon

Table 2 Dispersion, nonlinearity and confinement properties of PMMA-, PC-, and COP 480R-cladded microwires at an operation wavelength of 1.94 μm. γmax: maximum γ; dγmax: diameter corresponding to maximum γ

Metrics