Abstract

The impact of the addition of some amount of SiO2 in the ZnGa2O4:Cr3+ phosphors have been studied onto its persistent luminescent performance. The ZnGa2O4:Cr3+ phosphors with different Si4+ concentrations have been synthesized by using conventional solid-state reaction method. The X-ray diffractive patterns, photoluminescence (PL), thermoluminescence (TL) and afterglow decay have been measured and analyzed. The experimental results indicated that all the phosphors with different Si4+ codopant have the characteristic emission of Cr3+ and the co-doped Si4+ intensifies emission of N2 line and R lines. Furthermore the persistent luminescence was improved in both intensities and decay rates, in which the phosphor with 1mol% Si4+ has the best TL and the appropriate trap depth leading to the good persistent performance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of oxygen vacancy on persistent luminescence in ZnGa2O4:Cr3+ and identification of electron carriers

J. Su, S. Ye, X. Yi, F. Q. Lu, X. B. Yang, and Q. Y. Zhang
Opt. Mater. Express 7(3) 734-743 (2017)

Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics

Yixi Zhuang, Jumpei Ueda, and Setsuhisa Tanabe
Opt. Mater. Express 2(10) 1378-1383 (2012)

ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness

Aurélie Bessière, Sylvaine Jacquart, Kaustubh Priolkar, Aurélie Lecointre, Bruno Viana, and Didier Gourier
Opt. Express 19(11) 10131-10137 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  2. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  3. Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
    [Crossref] [PubMed]
  4. H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
    [Crossref]
  5. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
    [Crossref]
  6. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  7. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
    [Crossref]
  8. D. D. Jia, “Enhancement of long-persistence by Ce Co-doping in CaS: Eu2+, Tm3+ red phosphor,” J. Electrochem. Soc. 153(11), H198–H201 (2006).
    [Crossref]
  9. I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
    [Crossref]
  10. Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
    [Crossref]
  11. N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
    [Crossref]
  12. M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
    [Crossref]
  13. Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
    [Crossref]
  14. S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
    [PubMed]
  15. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  16. B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).
  17. J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
    [Crossref]
  18. Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
    [Crossref]
  19. S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
    [Crossref]
  20. D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
    [Crossref]
  21. W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
    [Crossref]
  22. W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines,” J. Lumin. 26(1–2), 53–66 (1981).
    [Crossref]
  23. Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
    [Crossref]
  24. Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
    [Crossref]
  25. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]
  26. Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
    [Crossref] [PubMed]
  27. H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
    [Crossref]

2014 (1)

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

2013 (6)

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

2012 (2)

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

2011 (2)

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

2010 (1)

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

2009 (1)

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

2008 (2)

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

2007 (2)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

2006 (2)

D. D. Jia, “Enhancement of long-persistence by Ce Co-doping in CaS: Eu2+, Tm3+ red phosphor,” J. Electrochem. Soc. 153(11), H198–H201 (2006).
[Crossref]

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

2004 (1)

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

2003 (1)

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

2002 (2)

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

2001 (1)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

1998 (1)

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1981 (1)

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines,” J. Lumin. 26(1–2), 53–66 (1981).
[Crossref]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

Aizawa, H.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Allix, M.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Bahng, J. H.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Basavaraju, N.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Bessière, A.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Bos, A. J. J.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chang, S. K.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

Chen, L.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

Chen, Z.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Chenu, S.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Choi, J. C.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Cong, Y.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

El, A.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Eom, S. H.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Gong, Y.

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Gourier, D.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Han, S. D.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

Hu, Y.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Hu, Z. F.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Huang, H. Q.

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

Huang, S. Y.

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

Hwang, Y. H.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Jacquart, S.

Jeong, I. K.

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Jia, D. D.

D. D. Jia, “Enhancement of long-persistence by Ce Co-doping in CaS: Eu2+, Tm3+ red phosphor,” J. Electrochem. Soc. 153(11), H198–H201 (2006).
[Crossref]

Jin, Y.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Jolivet, J. P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Ju, G.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

Kang, H. I.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Katsumata, T.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Kim, G. C.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Kim, J. S.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Kim, T. W.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Kim, W. T.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Kim, Y. G.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

Komuro, S.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Lecointre, A.

Lee, M.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Li, B.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

Li, D. R.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Li, S.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Li, W.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

Liang, F.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Lin, Y.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Liu, F.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Lu, S. Z.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Lu, Y. Y.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Luo, C.

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Matsunaga, K.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Mho, S. I.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Mikenda, W.

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines,” J. Lumin. 26(1–2), 53–66 (1981).
[Crossref]

Morikawa, T.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Mou, Z.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

Pan, Z.

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Park, H. L.

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Peng, Z.

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Poumeyrol, T.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Preisinger, A.

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines,” J. Lumin. 26(1–2), 53–66 (1981).
[Crossref]

Priolkar, K.

Priolkar, K. R.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Qiao, B.

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

Ren, X. G.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Sharma, S.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Shi, Q.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Smet, P. F.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Song, H. J.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Takahashi, J.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Tang, Z.

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Toba, E.

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Ueda, J.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Véron, E.

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Viana, B.

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Wang, C.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Wang, T.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Wang, W.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Wang, X.

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Wang, X. J.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Wang, Y. H.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Wu, C. J.

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Xu, K.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Xu, X. H.

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Xu, Z.

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Yao, Z. G.

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

Ye, S.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Yu, J.

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Yu, Y. S.

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Yue, S.

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

Zeng, W.

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Zhang, D.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Zhang, G.

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Zhang, J.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhang, J. H.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Zhang, J. Y.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Zhang, L.

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

Zhang, W.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhang, X.

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

Zhang, X. Q.

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

Zhang, Z.

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Zhao, H.

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Zheng, S.

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

Zhuang, Y.

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Appl. Phys. Express (1)

Y. Zhuang, J. Ueda, and S. Tanabe, “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” Appl. Phys. Express 6(5), 052602 (2013).
[Crossref]

Chem. Mater. (1)

M. Allix, S. Chenu, E. Véron, T. Poumeyrol, and A. El, “Kouadri-Boudjelthia, S. Alahraché, F. Porcher, D. Massiot, and F. Fayon, “Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4,” Chem. Mater. 25(9), 1600–1606 (2013).
[Crossref]

Electrochem. Solid-State Lett. (1)

H. Aizawa, T. Katsumata, J. Takahashi, K. Matsunaga, S. Komuro, T. Morikawa, and E. Toba, ““Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor,” ECS,” Electrochem. Solid-State Lett. 5(9), H17–H19 (2002).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

S. Y. Huang, X. Q. Zhang, H. Q. Huang, and Z. G. Yao, “[Effects of preparation parameters on the long lasting luminescence of ZnGa2O4.],” Guangpuxue Yu Guangpu Fenxi 28(12), 2777–2780 (2008).
[PubMed]

J. Appl. Phys. (1)

S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, and X. J. Wang, “Mn2+ activated red phosphorescence in BaMg2Si2O7: Mn2+, Eu2+, Dy3+ through persistent energy transfer,” J. Appl. Phys. 101(6), 063545 (2007).
[Crossref]

J. Electrochem. Soc. (3)

Y. Cong, B. Li, S. Yue, L. Zhang, W. Li, and X. Wang, “Enhanced Red Phosphorescence in MgGeO3: Mn2+ by addition of Yb3+ Ions,” J. Electrochem. Soc. 156(4), H272–H275 (2009).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4: Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

D. D. Jia, “Enhancement of long-persistence by Ce Co-doping in CaS: Eu2+, Tm3+ red phosphor,” J. Electrochem. Soc. 153(11), H198–H201 (2006).
[Crossref]

J. Lumin. (3)

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates,” J. Lumin. 94–95, 59–63 (2001).
[Crossref]

W. Zhang, J. Zhang, Z. Chen, T. Wang, and S. Zheng, “Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors,” J. Lumin. 130(10), 1738–1743 (2010).
[Crossref]

W. Mikenda and A. Preisinger, “N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines,” J. Lumin. 26(1–2), 53–66 (1981).
[Crossref]

J. Phys. D Appl. Phys. (1)

N. Basavaraju, S. Sharma, A. Bessière, B. Viana, D. Gourier, and K. R. Priolkar, “Red persistent luminescence in MgGa2O4: Cr3+, a new phosphor for in vivo imaging,” J. Phys. D Appl. Phys. 46(37), 375401 (2013).
[Crossref]

Luminescence (1)

Z. Peng, Z. Xu, C. Luo, J. Yu, and G. Zhang, “Synthesis and luminescent properties of a novel bluish-white afterglow phosphor, b-Zn3(PO4)2:Hf4+,” Luminescence 23(1), 14–16 (2008).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[Crossref]

Mater. Sci. Eng. B (1)

Y. Jin, Y. Hu, L. Chen, X. Wang, Z. Mou, G. Ju, and F. Liang, “Luminescent properties of a reddish orange emitting long-lasting phosphor CaO: Pr3+,” Mater. Sci. Eng. B 178(18), 1205–1211 (2013).
[Crossref]

Materials (Basel) (1)

K. Van den Eeckhout, D. Poelman, and P. F. Smet, “Persistent Luminescence in Non-Eu2+-Doped Compounds-A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Nat. Mater. (1)

Z. Pan, Y. Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates,” Nat. Mater. 11(1), 58–63 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

D. R. Li, Y. H. Wang, K. Xu, H. Zhao, and Z. F. Hu, “Effect of H3BO3 on the persistent luminescence and photocatalytic properties of ZnGa2O4 phosphors,” Opt. Mater. 36(11), 1836–1840 (2014).
[Crossref]

Phys. Procedia (1)

Y. Gong, X. H. Xu, W. Zeng, C. J. Wu, and Y. H. Wang, “Ce3+, Mn2+ co-doped Red - light Long- Lasting phosphor: BaMg2Si2O7 Through Energy Transfer,” Phys. Procedia 29, 86–90 (2012).
[Crossref]

Phys. Rev. B (1)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. F. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J. P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Solid State Commun. (3)

I. K. Jeong, H. L. Park, and S. I. Mho, “Two self-activated Optical Centers of Blue emission in Zinc Gallate,” Solid State Commun. 105(3), 179–183 (1998).
[Crossref]

J. S. Kim, J. S. Kim, T. W. Kim, H. L. Park, Y. G. Kim, S. K. Chang, and S. D. Han, “Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors,” Solid State Commun. 131(8), 493–497 (2004).
[Crossref]

H. I. Kang, J. S. Kim, M. Lee, J. H. Bahng, J. C. Choi, H. L. Park, G. C. Kim, T. W. Kim, Y. H. Hwang, S. I. Mho, S. H. Eom, Y. S. Yu, H. J. Song, and W. T. Kim, “Tunable color emission of ZnGa2O4: Si4+ phosphors with enhanced brightness due to donor formation,” Solid State Commun. 122(12), 633–636 (2002).
[Crossref]

Thin Solid Films (1)

Q. Shi, C. Wang, D. Zhang, S. Li, L. Zhang, W. Wang, and J. Y. Zhang, “Luminescence of Cr3+-doped ZnGa2O4 thin films deposited by pulsed laser ablation,” Thin Solid Films 520(23), 6845–6849 (2012).
[Crossref]

Wuli Huaxue Xuebao (1)

B. Qiao, Z. Tang, Z. Zhang, and L. Chen, “Photoluminescent and Electroluminescent Characteristics of ZnGa2O4:Cr3+ Red Phosphor,” Wuli Huaxue Xuebao 22(10), 1291–1295 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The XRD patterns of the prepared samples ZnGa2O4: 0.5% Cr3+, xSi4+ with (a) x = 0, (b) x = 0.01, (c) x = 0.03, (d) x = 0.05.
Fig. 2
Fig. 2 The SEM images of ZnGa2O4: 0.5% Cr3+, xSi4+ samples with (a) x = 0, (b) x = 0.01, (c) x = 0.03, and (d) x = 0.05.
Fig. 3
Fig. 3 Excitation spectra of ZnGa2O4: 0.5% Cr3+ by monitoring at λem = 687 nm.
Fig. 4
Fig. 4 Emission spectra of ZnGa2O4: 0.5% Cr3 + , xSi4 + by λex = 400 nm excitation.
Fig. 5
Fig. 5 The persistent luminescence of samples with different co-doped Si4+ concentrations at λex = 254 nm excitation.
Fig. 6
Fig. 6 The Afterglow decay curves for all ZnGa2O4: 0.5% Cr3+, xSi4+ phosphors.
Fig. 7
Fig. 7 The TL spectra of the as-prepared ZnGa2O4: 0.5% Cr3+ phosphors with each concentration of Si4+ doping. The inset presents the fitting of the first TL peak at nearly identical Tm = 75°C.

Tables (2)

Tables Icon

Table 1 The time constants (τ1, τ2) fitted from the afterglow decay curves for ZnGa2O4: 0.5% Cr3+, xSi4+

Tables Icon

Table 2 The TL peak (Tm) and the corresponding depth of trap levels for ZnGa2O4: 0.5% Cr3+, xSi4

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= I 0 + I 1 exp( t τ 1 )+ I 2 exp( t τ 2 )

Metrics