Abstract

We report the synthesis and biological studies of a fluorescence dye with an oligoethylene glycol substituted (OEG) perylene centered dye N,N’-(2,6-diisopropylphenyl)-1-[oligo(ethylene glycol)methyl ether]-1,6,7,12-trichloroperylene-3,4:9,10-tetracarboxdiimide (PDI-OEG). The activity of the dye is juxtaposed with a precursor molecule without the OEG substitution. The OEG substitution contributes to the increased biocompatibility of PDI-OEG. Cell viability studies lead to the survival of more than 80% of the PDI-OEG cultured cells endorsing its biocompatibility. Fluorescence imaging studies were carried out using multiple cell lines. Ex-vivo studies involving nude mice were used to establish liver and lung specific organ targeting of PDI-OEG. This fluorophore is an excellent example of a stable and biocompatible red emitting small molecule for bioimaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging

Liliang Chu, Shaowei Wang, Kanghui Li, Wang Xi, Xinyuan Zhao, and Jun Qian
Biomed. Opt. Express 5(11) 4076-4088 (2014)

Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

Xuhua Wang, Sheng Yao, Hyo-Yang Ahn, Yuanwei Zhang, Mykhailo V. Bondar, Joseph A. Torres, and Kevin D. Belfield
Biomed. Opt. Express 1(2) 453-462 (2010)

Amplified spontaneous emission in polymer films doped with a perylenediimide derivative

Eva M. Calzado, José M. Villalvilla, Pedro G. Boj, José A. Quintana, Rafael Gómez, José L. Segura, and María A. Díaz García
Appl. Opt. 46(18) 3836-3842 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao and M. R. Wasielewski, “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,” Tetrahedron Lett. 40(39), 7047–7050 (1999).
    [Crossref]
  2. T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
    [Crossref] [PubMed]
  3. F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
    [Crossref]
  4. T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
    [Crossref] [PubMed]
  5. S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
    [Crossref] [PubMed]
  6. H. Langhals, “Control of the interactions in multichromophores: Novel concepts. Perylene bis-imides as components for larger functional units,” Helv. Chim. Acta 88(6), 1309–1343 (2005).
    [Crossref]
  7. V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
    [Crossref] [PubMed]
  8. C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
    [Crossref] [PubMed]
  9. M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
    [Crossref] [PubMed]
  10. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11(4), 303–317 (1989).
    [Crossref]
  11. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
    [Crossref] [PubMed]
  12. M. Chen and M. Yin, “Design and development of fluorescent nanostructures for bioimaging,” Prog. Polym. Sci. 39(2), 365–395 (2014).
    [Crossref]

2014 (1)

M. Chen and M. Yin, “Design and development of fluorescent nanostructures for bioimaging,” Prog. Polym. Sci. 39(2), 365–395 (2014).
[Crossref]

2013 (1)

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

2011 (1)

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

2010 (1)

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

2009 (1)

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

2008 (1)

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

2007 (1)

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

2006 (1)

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

2005 (1)

H. Langhals, “Control of the interactions in multichromophores: Novel concepts. Perylene bis-imides as components for larger functional units,” Helv. Chim. Acta 88(6), 1309–1343 (2005).
[Crossref]

2002 (1)

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
[Crossref] [PubMed]

1999 (1)

Y. Zhao and M. R. Wasielewski, “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,” Tetrahedron Lett. 40(39), 7047–7050 (1999).
[Crossref]

1989 (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11(4), 303–317 (1989).
[Crossref]

Bai, H.-R.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Bolink, H. J.

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Bräuchle, C.

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Céspedes-Guirao, F. J.

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Chen, M.

M. Chen and M. Yin, “Design and development of fluorescent nanostructures for bioimaging,” Prog. Polym. Sci. 39(2), 365–395 (2014).
[Crossref]

Doganay, S.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Fernández-Lázaro, F.

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Fu, T.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

García-Santamaría, S.

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Grazulevicius, J. V.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Gropeanu, R.

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Gruodis, A.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Ha, T.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Hu, R.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Jung, C.

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Jursenas, S.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Kaiser, T. E.

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

Kazlauskas, K.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Kong, R.-M.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Lamb, D. C.

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Langhals, H.

H. Langhals, “Control of the interactions in multichromophores: Novel concepts. Perylene bis-imides as components for larger functional units,” Helv. Chim. Acta 88(6), 1309–1343 (2005).
[Crossref]

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
[Crossref] [PubMed]

Müllen, K.

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Müller, B. K.

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Nolde, F.

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

Park, S.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Pflugfelder, G. O.

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Sastre-Santos, A.

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11(4), 303–317 (1989).
[Crossref]

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
[Crossref] [PubMed]

Shen, J.

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Shi, X.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Simokaitiene, J.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Sivamurugan, V.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Stepanenko, V.

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

Tan, W.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Valiyaveettil, S.

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11(4), 303–317 (1989).
[Crossref]

Wang, H.

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

Wasielewski, M. R.

Y. Zhao and M. R. Wasielewski, “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,” Tetrahedron Lett. 40(39), 7047–7050 (1999).
[Crossref]

Weil, T.

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
[Crossref] [PubMed]

Würthner, F.

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

Yang, S. K.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Yin, M.

M. Chen and M. Yin, “Design and development of fluorescent nanostructures for bioimaging,” Prog. Polym. Sci. 39(2), 365–395 (2014).
[Crossref]

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Yu, R.-Q.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Zhang, X.-B.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Zhao, X.-H.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and M. R. Wasielewski, “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,” Tetrahedron Lett. 40(39), 7047–7050 (1999).
[Crossref]

Zhao, Z.-L.

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Zimmerman, S. C.

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner, “Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes,” Angew. Chem. Int. Ed. Engl. 46(29), 5541–5544 (2007).
[Crossref] [PubMed]

Chem. Commun. (1)

T. Fu, X.-H. Zhao, H.-R. Bai, Z.-L. Zhao, R. Hu, R.-M. Kong, X.-B. Zhang, W. Tan, and R.-Q. Yu, “A superquenched DNAzyme-perylene complex: A convenient, universal and low-background strategy for fluorescence catalytic biosensors,” Chem. Commun. 49(59), 6644–6646 (2013).
[Crossref] [PubMed]

Dyes Pigm. (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigm. 11(4), 303–317 (1989).
[Crossref]

Helv. Chim. Acta (1)

H. Langhals, “Control of the interactions in multichromophores: Novel concepts. Perylene bis-imides as components for larger functional units,” Helv. Chim. Acta 88(6), 1309–1343 (2005).
[Crossref]

J. Am. Chem. Soc. (2)

C. Jung, B. K. Müller, D. C. Lamb, F. Nolde, K. Müllen, and C. Bräuchle, “A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling,” J. Am. Chem. Soc. 128(15), 5283–5291 (2006).
[Crossref] [PubMed]

S. K. Yang, X. Shi, S. Park, S. Doganay, T. Ha, and S. C. Zimmerman, “Monovalent, clickable, uncharged, water-soluble perylenediimide-cored dendrimers for target-specific fluorescent biolabeling,” J. Am. Chem. Soc. 133(26), 9964–9967 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

V. Sivamurugan, K. Kazlauskas, S. Jursenas, A. Gruodis, J. Simokaitiene, J. V. Grazulevicius, and S. Valiyaveettil, “Synthesis and photophysical properties of glass-forming bay-substituted perylenediimide derivatives,” J. Phys. Chem. B 114(5), 1782–1789 (2010).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, and H. J. Bolink, “Efficient electroluminescence from a perylenediimide fluorophore obtained from a simple solution processed oled,” J. Phys. D Appl. Phys. 42(10), 105106 (2009).
[Crossref]

Photochem. Photobiol. (1)

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields,” Photochem. Photobiol. 75(4), 327–334 (2002).
[Crossref] [PubMed]

Prog. Polym. Sci. (1)

M. Chen and M. Yin, “Design and development of fluorescent nanostructures for bioimaging,” Prog. Polym. Sci. 39(2), 365–395 (2014).
[Crossref]

Small (1)

M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil, and K. Müllen, “Fluorescent core/shell nanoparticles for specific cell-nucleus staining,” Small 4(7), 894–898 (2008).
[Crossref] [PubMed]

Tetrahedron Lett. (1)

Y. Zhao and M. R. Wasielewski, “3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors,” Tetrahedron Lett. 40(39), 7047–7050 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Synthetic route for PDI-OEG.
Fig. 2
Fig. 2 Optical properties of PDI derivatives depending on solvent polarity. (a) Fluorescence spectra of PDI core in different solvents (inset is the enlarged emission in DMSO), and (b) those of PDI-OEG in toluene (black solid line), THF (red solid line) and DMSO (blue solid line). The concentration of each fluorophore is 7.27 × 10−7 M.
Fig. 3
Fig. 3 Optical behaviors of PDI derivatives in PBS, in the FBS in PBS 50:50 buffer, and in PBS containing HSA. (a) Fluorescence spectra of PDI core in PBS. (b) Fluorescence spectra of PDI-OEG in FBS in PBS 50:50 buffer under at a concentration 2.02 × 10−7 M. (c) Fluorescence spectra of PDI-OEG solution with different concentrations in PBS containing HSA. (d) Sonication time dependent fluorescence spectra of a 2.02 × 10−7 M solution of PDI-OEG prepared with HSA in PBS buffer. The excitation wavelength for recording the fluorescence spectra was 510 nm.
Fig. 4
Fig. 4 (a) Cell viability of MDA-MB 231 cells treated with PDI derivatives of time interval. (b) Comparison of cellular images of HeLa cells treated with PDI core and PDI-OEG.
Fig. 5
Fig. 5 Fluorescence cellular images of (a) MDA-MB 231, (b) HeLa and (c) SCC-7 tumor cells cultured with PDI-OEG dissolved in DMSO for 2 hours.
Fig. 6
Fig. 6 In vivo and ex vivo real time fluorescence images using IVIS spectrum imaging system of PDI-OEG. (a) In vivo fluorescence images of Balb/C nude mice intravenous injection of PDI-OEG labeled SCC-7 cells (200 μl/5 × 106). (b) Ex vivo fluorescence images of major organs obtained after in vivo images for 1 day. (c) In vivo fluorescence images of Balb/C nude mice intravenous injection of PDI-OEG labeled SCC-7 cells (200 μl/1 × 107). (d) Ex vivo fluorescence images of major organs obtained after in vivo images for 1 h.

Metrics