Abstract

A dark metamaterial of gold thin films is reported fabricated on a taro-leaf surface, used as a template. In spite of gold coating over the taro leaf, the surface is dark and has great light-absorption at the visible wavelengths. Finite-difference time-domain (FDTD) calculations predict the low reflectivity stemming from the nanostructures of a taro leaf, where randomly oriented nanoplates of thin rectangular plates are vertically set on edge.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband light absorber property of metal-coated pillars on cicada wings

Mariko Kobayashi, Takaya Furusawa, Taiki Chikuta, Masayuki Shimojo, and Kotaro Kajikawa
Opt. Mater. Express 9(7) 2761-2768 (2019)

Broadband light absorber of gold-coated moth-eye film

Mariko Kobayashi, Yuki Katori, Masatoshi Yamaguchi, Masayuki Shimojo, and Kotaro Kajikawa
Opt. Mater. Express 9(9) 3744-3752 (2019)

Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur
Opt. Express 15(5) 2613-2621 (2007)

References

  • View by:
  • |
  • |
  • |

  1. Andrew R. Parker, “Natural photonic engineers,” Materials Today 5, 26–31 (2002).
    [Crossref]
  2. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Phil. Trans. R. Soc. B 363, 2465–2480 (2008).
    [Crossref] [PubMed]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [Crossref] [PubMed]
  4. S. Kinothista and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
    [Crossref]
  5. W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
    [Crossref] [PubMed]
  6. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
    [Crossref]
  7. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
    [Crossref]
  8. Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
    [Crossref]
  9. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
    [Crossref]
  10. C. W. Extrand, “Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure,” Langmuir 27, 6920–6925 (2011).
    [Crossref] [PubMed]
  11. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
    [Crossref]
  12. Y.-T. Cheng and D. E. Rodak, “Is the lotus leaf superhydrophobic?” Appl. Phys. Lett. 86, 144101 (2005).
    [Crossref]
  13. R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
    [Crossref] [PubMed]
  14. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
    [Crossref] [PubMed]
  15. Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
    [Crossref]
  16. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
    [Crossref]
  17. L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
    [Crossref] [PubMed]
  18. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
    [Crossref]
  19. B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
    [Crossref]
  20. Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
    [Crossref]
  21. Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
    [Crossref] [PubMed]
  22. S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
    [Crossref]
  23. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989).
    [Crossref]

2015 (2)

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

2012 (1)

Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
[Crossref]

2011 (1)

C. W. Extrand, “Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure,” Langmuir 27, 6920–6925 (2011).
[Crossref] [PubMed]

2008 (2)

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Phil. Trans. R. Soc. B 363, 2465–2480 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
[Crossref]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

2006 (2)

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

2005 (4)

Y.-T. Cheng and D. E. Rodak, “Is the lotus leaf superhydrophobic?” Appl. Phys. Lett. 86, 144101 (2005).
[Crossref]

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

S. Kinothista and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]

2004 (2)

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

2003 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref] [PubMed]

2002 (2)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
[Crossref]

Andrew R. Parker, “Natural photonic engineers,” Materials Today 5, 26–31 (2002).
[Crossref]

1997 (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[Crossref]

1989 (1)

Alonso, L.

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Anastasiadis, S. H.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Barberoglou, M.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Barthlott, W.

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[Crossref]

Bethune, D. S.

Chen, Y.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Cheng, B.

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

Cheng, Y.-T.

Y.-T. Cheng and D. E. Rodak, “Is the lotus leaf superhydrophobic?” Appl. Phys. Lett. 86, 144101 (2005).
[Crossref]

DeSimone, J. M.

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

Ebihara, Y.

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Extrand, C. W.

C. W. Extrand, “Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure,” Langmuir 27, 6920–6925 (2011).
[Crossref] [PubMed]

Fan, Y.

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

Feng, L.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Fotakis, C.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Fürstner, R.

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

Gao, X.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
[Crossref]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

He, Y.

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

Ingram, A. L.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Phil. Trans. R. Soc. B 363, 2465–2480 (2008).
[Crossref] [PubMed]

Ji, H.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Jiang, L.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
[Crossref]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Jin, M.-K.

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

Kajiakwa, K.

Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
[Crossref]

Kajikawa, K.

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
[Crossref]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
[Crossref]

Kinothista, S.

S. Kinothista and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]

Kong, Y.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

Lee, J.-K.

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

Lee, W.

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

Li, H.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Li, L.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Li, S.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Li, Y.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Liu, B.

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Liu, Y.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Lu, H.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Luo, C.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Moreno, J.

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Nagai, Y.

Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
[Crossref]

Neinhuis, C.

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[Crossref]

Noriki, T.

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Ota, R.

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Ouyang, Q.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Parker, A. R.

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Phil. Trans. R. Soc. B 363, 2465–2480 (2008).
[Crossref] [PubMed]

Parker, Andrew R.

Andrew R. Parker, “Natural photonic engineers,” Materials Today 5, 26–31 (2002).
[Crossref]

Qia, K.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Rodak, D. E.

Y.-T. Cheng and D. E. Rodak, “Is the lotus leaf superhydrophobic?” Appl. Phys. Lett. 86, 144101 (2005).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

Samson, R.

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Samulski, E. T.

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

Shimojo, M.

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Song, Y.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Spanakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Stratakis, E.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Sun, M.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Tang, J.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Tzanetakis, P.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Verrelst, J.

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Vukusic, P.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref] [PubMed]

Walzel, P.

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

Wang, R.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Wang, X.

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

Wittenberghe, S. V.

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

Xin, J. H.

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

Xu, L.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Yamaguchi, T.

Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
[Crossref]

Yan, X.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Yang, B.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Yao, X.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Yoo, W.-C.

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

Yoshioka, S.

S. Kinothista and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
[Crossref]

Yu, D.

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

Zhai, J.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Zhang, J.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Zhang, K.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Zhang, L.

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Zheng, Y.

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
[Crossref]

Zhou, Z.

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

Zhu, D.

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Zorba, V.

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

Adv. Mat. (2)

V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf,” Adv. Mat. 20, 4049–4054 (2008).
[Crossref]

L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,#x0201D; Adv. Mat. 14, 1857–1860 (2004).
[Crossref]

Adv. Matter. (1)

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography,” Adv. Matter. 19, 2213–2217 (2007).
[Crossref]

Appl. Phys. Lett. (1)

Y.-T. Cheng and D. E. Rodak, “Is the lotus leaf superhydrophobic?” Appl. Phys. Lett. 86, 144101 (2005).
[Crossref]

ChemPhysChem (1)

S. Kinothista and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem 6, 1442–1459 (2005).
[Crossref]

J. Mat. Chem. (1)

Y. Liu, Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, K. Qia, and J. H. Xin, “Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles,” J. Mat. Chem. 17, 1071–1078 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Y. Nagai, T. Yamaguchi, and K. Kajiakwa, “Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy,” J. Phys. Chem. C 116, 9716–9723 (2012).
[Crossref]

Langmuir (5)

R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961 (2005).
[Crossref] [PubMed]

M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, and Y. Chen, “Artificial Lotus Leaf by Nanocasting,” Langmuir 21, 8978–8981 (2005).
[Crossref] [PubMed]

L. Zhang, Z. Zhou, B. Cheng, J. M. DeSimone, and E. T. Samulski, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-like Topography,” Langmuir 22, 8576–8580 (2006).
[Crossref] [PubMed]

W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669 (2004).
[Crossref] [PubMed]

C. W. Extrand, “Repellency of the Lotus Leaf: Resistance to Water Intrusion under Hydrostatic Pressure,” Langmuir 27, 6920–6925 (2011).
[Crossref] [PubMed]

Macrommol. Rapid. Commun. (1)

B. Liu, Y. He, Y. Fan, and X. Wang, “Fabricating Super-Hydrophobic Lotus-Leaf-Like Surfaces through Soft-Lithographic Imprinting,” Macrommol. Rapid. Commun. 27, 1859–1864 (2006).
[Crossref]

Materials Today (1)

Andrew R. Parker, “Natural photonic engineers,” Materials Today 5, 26–31 (2002).
[Crossref]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[Crossref] [PubMed]

Phil. Trans. R. Soc. B (1)

A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990),” Phil. Trans. R. Soc. B 363, 2465–2480 (2008).
[Crossref] [PubMed]

Planta (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202, 1–8 (1997).
[Crossref]

Proc. R. Soc. Lond. B (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterly scales,” Proc. R. Soc. Lond. B 266, 1403–1411 (2003).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. R. Soc. Lond. B 269, 1417–1421 (2002).
[Crossref]

Remote Sensing of Environment (1)

S. V. Wittenberghe, L. Alonso, J. Verrelst, J. Moreno, and R. Samson, “Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties A bottom-up approach Remote Sensing of Environment,” Remote Sensing of Environment 158169–179 (2015).
[Crossref]

Sci. Rep. (1)

Y. Ebihara, R. Ota, T. Noriki, M. Shimojo, and K. Kajikawa, “Biometamaterials: Black Ultrathin Gold Film Fabricated on Lotus Leaf,” Sci. Rep. 5, 15992 (2015).
[Crossref] [PubMed]

Soft Matter (1)

Y. Zheng, X. Gao, and L. Jiang, “Directional adhesion of superhydrophobic butterfly wings,” Soft Matter 3, 178–182 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Photo images of (a) a taro leaf and (b) gold-coated taro leaf.
Fig. 2
Fig. 2 (a) Reflection spectra from the gold-covered taro leaf (I) and bare taro leaf without coating (II). (b) Scattering intensity spectra S/S0 from the gold-covered taro leaf (I) and taro leaf with no gold-coating (II).
Fig. 3
Fig. 3 SEM images of the gold-covered taro leaf. (a): low-magnification image. (b): the magnified image of the center of the image (a). (c): the magnified image of region A and the fine image of the plates (inset). (d): the magnified image of region B.
Fig. 4
Fig. 4 (a) SEM image of region A, (b) the image of the binary-processed SEM image in region A, and (c) the model for calculation of the region A. (d) SEM image, (e) the binary-processed SEM image, and (f) the model for calculation of the region B.
Fig. 5
Fig. 5 Calculated spectra of reflectivity R, transmittance T, absorption efficiency A and the scattering efficiency S for the model of region A (a) and for the model of region B (b), using the FDTD method.
Fig. 6
Fig. 6 Calculated reflectivity R, transmittance T and absorption efficiency A for a flat 30-nm thick gold thin film using the Transfer Matrix method [23].

Metrics