Abstract

Light absorption plays a key role in photovoltaic devices, especially in thin-film CdTe-based solar cells. Here we study the enhancement of optical absorption in a ultrathin CdTe layer by embedding it into optical magnetic metamaterials. In a periodic metal-CdS-CdTe-metal sandwiched structure, the absorption of transverse magnetic polarized light has been significantly enhanced. The maximum enhancement is around 3 times, which is attributed to the strong local field enhancement in the CdTe thin film. Importantly, due to the coexistence of large electric resonance and magnetic resonance in magnetic metamaterials, the enhancement of light absorption has been obtained in a broadband from 400 nm to 800 nm, which is almost 1.5 times of that of the conventional CdTe-based photovoltaic device and covers the strongest part of the solar spectrum. Moreover, such absorption enhancement is also valid for a wide range of incident angles. We believe that our finding can lead to a variety of important applications in ultrathin CdTe-based solar cell technology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial

Chen Zhang, Weizhong Zhou, Shang Sun, Ningbo Yi, Qinghai Song, and Shumin Xiao
Opt. Mater. Express 5(9) 1954-1961 (2015)

Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles

Sangsu Kim, Jonghee Suh, Taeyueb Kim, Jinki Hong, and Shinhaeng Cho
Opt. Express 27(15) 22017-22024 (2019)

Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

Ting S. Luk, Nche T. Fofang, Jose L. Cruz-Campa, Ian Frank, and Salvatore Campione
Opt. Express 22(S5) A1372-A1379 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley-VCH, 2006).
  2. J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).
    [Crossref]
  3. N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
    [Crossref]
  4. X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
    [Crossref]
  5. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [Crossref]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  7. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
    [Crossref]
  8. N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, “Substrate-modified scattering properties of silicon nanostructures for solar energy applications,” Opt. Express 21(4), 4774–4782 (2013).
    [Crossref] [PubMed]
  9. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  10. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
    [Crossref] [PubMed]
  11. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  12. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [Crossref] [PubMed]
  13. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (Boca Raton, 2008).
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  18. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  19. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  20. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref] [PubMed]
  21. J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).
  22. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
    [Crossref]
  23. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [Crossref] [PubMed]
  24. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express 14(18), 8240–8246 (2006).
    [Crossref] [PubMed]
  25. V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
    [Crossref]
  26. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  27. P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).
  28. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  29. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  30. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
    [Crossref]
  31. T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
    [Crossref]
  32. Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
    [Crossref]
  33. C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).
  34. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]

2015 (1)

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

2014 (2)

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

2013 (2)

N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, “Substrate-modified scattering properties of silicon nanostructures for solar energy applications,” Opt. Express 21(4), 4774–4782 (2013).
[Crossref] [PubMed]

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

2012 (5)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

2011 (3)

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
[Crossref]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

2010 (6)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (3)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

2008 (3)

2007 (1)

2006 (2)

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express 14(18), 8240–8246 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (2)

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

1993 (1)

J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).
[Crossref]

Abbas, A.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Abbas, M. N.

Abrishamian, M. S.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Averitt, R. D.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Beck, F. J.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Bingham, C. M.

Bosio, A.

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

Bowers, J. W.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Brener, I.

Britt, J.

J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).
[Crossref]

Brongersma, M. L.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Cai, W.

Canevari, V.

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Chang, Y. C.

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

Cheng, C. W.

Chettiar, U. K.

Chiu, C. W.

Choy, W. C. H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Claudio, G.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Cui, Y.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Silva, V. C.

Dmitriev, A.

Dolgov, L.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Drachev, V. P.

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Ferekides, C.

J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).
[Crossref]

Fofang, N. T.

Garnett, E. C.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Granpayeh, N.

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Grushko, E. V.

V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
[Crossref]

Gu, Q. L.

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[Crossref]

Hao, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hiie, J.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Ho, A. H. P.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Hsu, C.-M.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Jeong, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Käll, M.

Kaminski, P. M.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Khoo, I. C.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Kildishev, A. V.

Kosyachenko, L. A.

V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
[Crossref]

Krunks, M.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Lai, K. T.

Landy, N. I.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, X.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Lisco, F.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Loot, A.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Lu, H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Luk, T. S.

McGehee, M. D.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mokkapati, S.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Nielson, G. N.

Okandan, M.

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pakizeh, T.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pikker, S.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

Podestà, A.

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Repän, T.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Romeo, N.

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

Roshko, V. Ya.

V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sha, W. E. I.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Shalaev, V. M.

Shih, M. H.

Sildos, I.

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Song, Q. H.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, S.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Tao, H.

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Walls, J. M.

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Wang, J.

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, S.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Wu, X.

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

Xiao, S. M.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

Yi, N. B.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Yu, Z.

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Yuan, H. K.

Zhang, C.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Zhang, X.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, W. Z.

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

Zhu, J.

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

V. Ya. Roshko, L. A. Kosyachenko, and E. V. Grushko, “Theoretical Analysis of Optical Losses in CdS/CdTe Solar Cells,” Acta Phys. Pol. A 120(5), 954–956 (2011).
[Crossref]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Appl. Phys. Lett. (6)

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[Crossref]

J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu, “Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared,” Appl. Phys. Lett. 109, 074510 (2011).

C. Zhang, W. Z. Zhou, S. Sun, N. B. Yi, Q. H. Song, and S. M. Xiao, “Absorption enhancement in thin-film organic solar cells through electric and magnetic resonances in optical metamaterial,” Appl. Phys. Lett. 5(9), 195–1961 (2015).

J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62(22), 2851–2852 (1993).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Energy Procedia (1)

T. Repän, S. Pikker, L. Dolgov, A. Loot, J. Hiie, M. Krunks, and I. Sildos, “Increased e fficiency inside the CdTe solar cell absorber caused by plasmonic metal nanoparticles,” Energy Procedia 44, 229–233 (2014).
[Crossref]

J. Appl. Phys. (1)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[Crossref]

Nano Lett. (3)

S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12(6), 2971–2976 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

PVSC (1)

P. M. Kaminski, F. Lisco, A. Abbas, J. W. Bowers, G. Claudio, and J. M. Walls, “Oxygenated CdS window layers for thin film CdTe Photovoltaics by pulsed DC magnetron sputtering,” PVSC 40, 1626–1631 (2014).

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sol. Energy (2)

N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy 77(6), 795–801 (2004).
[Crossref]

X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy 77(6), 803–814 (2004).
[Crossref]

Other (2)

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (Boca Raton, 2008).

J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley-VCH, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Basic structure of a CdTe solar cell with metamaterial electrodes. (a) The cross section of the structure. (b) The three-dimensional sketch of the structure.
Fig. 2
Fig. 2 The transmission/reflection/absorption spectra of the magnetic grating with CdTe layer between silver layers. The parameters are w = 90 nm, t = 30 nm, d1 = 30 nm, d2 = 200 nm, t Al2O3 = 10 nm and p = 270nm.
Fig. 3
Fig. 3 The electromagnetic power loss for CdTe layer with and without grating and the wavelength dependent absorption enhancement factor.
Fig. 4
Fig. 4 The electromagnetic energy loss density distribution. (a) at 485 nm. (b) at 645 nm.
Fig. 5
Fig. 5 The magnetic field distribution and the electric displacement inside the metamaterials based CdTe solar cell structure at (a) 485 nm. (b)645 nm.
Fig. 6
Fig. 6 Wavelength dependent absorption enhancement factor of the metamaterial based CdTe solar cell structure under different incident angles.

Metrics