Abstract

Persistent luminescence strontium aluminate nanoparticles co-doped with Eu2+ and Dy3+ were prepared by urea-assisted combustion synthesis. Different percentages of co-dopants were evaluated in order to optimize luminescence of the nanophosphor. Luminescence measurements showed that excitation of this green-emitting phosphor occurred within a wide range of wavelengths (254 – 460 nm) while the half-life time of persistent luminescence laid within the seconds regime. Presence of Dy3+ as the co-dopant enhanced the green emission in this interval of time, and the entire decay time occurred in minutes. Crystallinity and morphology were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Strontium aluminate co-doped with 1%Eu, and 1%Dy, and 1%Eu, and 3%Dy emitted an intense green signal and long decay time. These crystal nanophosphors displayed sizes of 18 nm and 22 nm, respectively. The cytotoxic effect of nanoparticles was determined by a cell viability test where the tri-methyl-tetrazolium reagent (MTT) was reduced only by metabolically active cells. Different concentrations of bare nanoparticles were tested in a 96-well plate containing 10, 000 cells per well of a human cervix carcinoma cell line (HeLa). Evaluation of cell viability by this cytotoxic assay showed that in most of the cases cell viability was higher than 60% after incubation with bare nanoparticles. Since our bare nanoparticles were not cytotoxic, these results open a broad field of biomedical applications for phosphorescent materials as cell biolabels and imaging research area.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

11 April 2016: A correction was made to the author affiliations.

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
    [Crossref]
  2. K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
    [Crossref]
  3. E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
    [Crossref]
  4. T. Maldiney, D. Scherman, and C. Richard, “Persistent luminescence nanoparticles for diagnostics and imaging,” ACS: ACS Symp. Ser.Washington (2012).
  5. V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
    [Crossref]
  6. M. Nazarov, “Persistent phosphors for painting, medical and biological applications,” MJPS 12 (N1-2), 102–118 (2013).
  7. X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
    [Crossref]
  8. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  9. D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
    [Crossref]
  10. H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
    [Crossref]
  11. N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
    [Crossref]
  12. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
    [Crossref]
  13. P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
    [Crossref]
  14. J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
    [Crossref]
  15. V. Abbruscato, “Optical and electrical properties of SrAl2O4 : Eu2+,” J. Electrochem. Soc. -Solid State Science 118(6), 930–933 (1971).
  16. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
    [Crossref]
  17. T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
    [Crossref]
  18. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
    [Crossref]
  19. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
    [Crossref]
  20. R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
    [Crossref] [PubMed]
  21. M. Melici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
    [Crossref]
  22. K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
    [Crossref] [PubMed]
  23. C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
    [Crossref] [PubMed]
  24. J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
    [Crossref]
  25. Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
    [Crossref]
  26. D. Sgouras and R. Duncan, “Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity,” J. Mater. Sci. -Mater. Med. 1(2), 61–68 (1990).
    [Crossref]
  27. H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
    [Crossref]
  28. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
    [Crossref] [PubMed]
  29. T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
    [Crossref]

2013 (2)

M. Nazarov, “Persistent phosphors for painting, medical and biological applications,” MJPS 12 (N1-2), 102–118 (2013).

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

2012 (2)

H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
[Crossref]

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

2011 (2)

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

2010 (1)

K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

2008 (2)

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

2007 (2)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

2005 (4)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

M. Melici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref]

J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
[Crossref]

2004 (1)

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

2003 (3)

P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
[Crossref]

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

2001 (2)

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

1997 (1)

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

1990 (1)

D. Sgouras and R. Duncan, “Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity,” J. Mater. Sci. -Mater. Med. 1(2), 61–68 (1990).
[Crossref]

1979 (1)

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

1971 (1)

V. Abbruscato, “Optical and electrical properties of SrAl2O4 : Eu2+,” J. Electrochem. Soc. -Solid State Science 118(6), 930–933 (1971).

1966 (1)

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
[Crossref]

Abbruscato, V.

V. Abbruscato, “Optical and electrical properties of SrAl2O4 : Eu2+,” J. Electrochem. Soc. -Solid State Science 118(6), 930–933 (1971).

Aghaei, A.

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

Aitasalo, T.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

Barbosa-Flores, M.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Benson, R. C.

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

Bodaghi, M.

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

Botterman, J.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Chan, W. C. W.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

Chander, H.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

Chang, W. H.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Chernov, V.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Cruz-Zaragoza, E.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Deren, P.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Dorenbos, P.

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

Duncan, R.

D. Sgouras and R. Duncan, “Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity,” J. Mater. Sci. -Mater. Med. 1(2), 61–68 (1990).
[Crossref]

Fairclough, S. M.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Giovanelli, E.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Hanada, T.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
[Crossref]

Haranath, D.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

Hildebrandt, N.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Hölsä, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

Hu, B.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Jain, V.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Jennings, T.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Jiang, W.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

Jiang, Z.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Jungner, H.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Jungnerc, H.

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

Kataoka, K.

H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
[Crossref]

Katsumata, T.

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

Khoa, L. V.

N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
[Crossref]

Kim, B. Y. S.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

Komuro, S.

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Krupa, J. C.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Lanh, P. T.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Lastusaari, M.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Lastusaaria, M.

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Legendziewicz, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Lequeux, N.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Li, H.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Li, J. K.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Li, P.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Li, Y.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Lin, C. J.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Lin, Y.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Lochmann, D.

J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
[Crossref]

Lu, X.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Maldiney, T.

T. Maldiney, D. Scherman, and C. Richard, “Persistent luminescence nanoparticles for diagnostics and imaging,” ACS: ACS Symp. Ser.Washington (2012).

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

Mayer, R. A.

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

McKhann, G. M.

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

Melici, M.

M. Melici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref]

Melndrez, R.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Morikawa, T.

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

Murayama, G.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

Nabae, T.

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

Nagasaki, Y.

H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
[Crossref]

Nazarov, M.

M. Nazarov, “Persistent phosphors for painting, medical and biological applications,” MJPS 12 (N1-2), 102–118 (2013).

Niittykoski, J.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Niittykoskia, J.

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Oh, E.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Otsuka, H.

H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
[Crossref]

Parak, W. J.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Peng, T.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Piters, T. M.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Poelman, D.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Pons, T.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Popovich, N. V.

P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
[Crossref]

Pu, X.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Richard, C.

T. Maldiney, D. Scherman, and C. Richard, “Persistent luminescence nanoparticles for diagnostics and imaging,” ACS: ACS Symp. Ser.Washington (2012).

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Rutka, J. T.

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

Sarkisov, P. D.

P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
[Crossref]

Sasajima, K.

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

Scherman, D.

T. Maldiney, D. Scherman, and C. Richard, “Persistent luminescence nanoparticles for diagnostics and imaging,” ACS: ACS Symp. Ser.Washington (2012).

Sgouras, D.

D. Sgouras and R. Duncan, “Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity,” J. Mater. Sci. -Mater. Med. 1(2), 61–68 (1990).
[Crossref]

Shafia, E.

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

Shanker, V.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

Sharma, P.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

Smet, P. F.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Smith, J. M.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Smith, P.F.

K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Son, N. M.

N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
[Crossref]

Sperling, R. A.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Strek, W.

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Tahiri, M.

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

Takasaki, H.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
[Crossref]

Tang, Z.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Thao, L. T.

N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
[Crossref]

Trac, N. N.

N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
[Crossref]

Van den Eeckhout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Wang, W.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Wegner, K. D.

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Weyermann, J.

J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
[Crossref]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Yan, C.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Yang, H.

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Yang, L.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Yang, T.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Ye, B.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Yen, W. M.

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Zanella, M.

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Zaruba, M. E.

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

Zhang, J.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Zhang, X.

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Zhang, Z.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Zhelnin, A. G.

P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
[Crossref]

Zheng, Z.

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Zimmer, A.

J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. D. Wegner, P. T. Lanh, T. Jennings, E. Oh, V. Jain, S. M. Fairclough, J. M. Smith, E. Giovanelli, N. Lequeux, T. Pons, and N. Hildebrandt, “Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitive of time-resolved free bioassays,” ACS Appl. Mater. Interfaces 5(8), 2881–2892 (2013).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

H. Otsuka, Y. Nagasaki, and K. Kataoka, “PEGylated nanoparticles for biological and pharmaceutical applications,” Adv. Drug Deliv. Rev. 64, 246–255 (2012).
[Crossref]

Biotechnol. Annu. Rev. (1)

M. Melici, “Cell and tissue autofluorescence research and diagnostic applications,” Biotechnol. Annu. Rev. 11, 227–256 (2005).
[Crossref]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+ doped with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Environ. Monit. Assess. (1)

X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, and B. Ye, “Impacts of lead/zinc mining and smelting on the environment and human health in China,” Environ. Monit. Assess. 184(4), 2261–2273 (2012).
[Crossref]

Glass Ceram. (1)

P. D. Sarkisov, N. V. Popovich, and A. G. Zhelnin, “Luminophores based on strontium aluminates produced by the sol-gel method,” Glass Ceram. 60(9–10), 309–312 (2003).
[Crossref]

Int. J. Pharm. (1)

J. Weyermann, D. Lochmann, and A. Zimmer, “A practical note on the use of cytotoxicity assays,” Int. J. Pharm. 288(2), 369–376 (2005).
[Crossref]

J. Alloys Compd. (1)

J. Hölsä, H. Jungnerc, M. Lastusaaria, and J. Niittykoskia, “Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O3 : Eu2+,” J. Alloys Compd. 323, 326–330 (2001).
[Crossref]

J. Ceram. Soc. Jpn. (1)

H. Takasaki, S. Tanabe, and T. Hanada, “Long-lasting afterglow characteristics of Eu, Dy codoped SrOAl2O3 phosphor,” J. Ceram. Soc. Jpn. 104(4), 322–326 (1966).
[Crossref]

J. Electrochem. Soc. (3)

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and G. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 13(8), 2670–2673 (1996).
[Crossref]

T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crytals,” J. Electrochem. Soc. 144(9), L243–L245 (1997).
[Crossref]

J. Electrochem. Soc. -Solid State Science (1)

V. Abbruscato, “Optical and electrical properties of SrAl2O4 : Eu2+,” J. Electrochem. Soc. -Solid State Science 118(6), 930–933 (1971).

J. Histochem. Cytochem. (1)

R. C. Benson, R. A. Mayer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence Is it due to flavins,” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[Crossref] [PubMed]

J. Mater. Sci. -Mater. Electron. (1)

E. Shafia, A. Aghaei, M. Bodaghi, and M. Tahiri, “Combustion synthesis, structural and photo-physical characteristics of Eu2+ and Dy3+ co-doped SrAl2O4 phosphors nanopowders,” J. Mater. Sci. -Mater. Electron. 22(8), 1136–1142 (2011).
[Crossref]

J. Mater. Sci. -Mater. Med. (1)

D. Sgouras and R. Duncan, “Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1-use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation of in vitro cytotoxicity,” J. Mater. Sci. -Mater. Med. 1(2), 61–68 (1990).
[Crossref]

J. Phys. D: Appl. Phys. (1)

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Tuning of emission colours in strontium aluminate long persisting phosphor,” J. Phys. D: Appl. Phys. 36(18), 2244–2248 (2003).
[Crossref]

J. Solid State Chem. (1)

T. Aitasalo, P. Deren, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, and W. Strek, “Persistent luminescence phenomena in materials doped with rare earth ions,” J. Solid State Chem. 171(1), 114–122, (2003).
[Crossref]

Mater. Chem. Phys. (1)

Y. Lin, Z. Zhang, Z. Tang, J. Zhang, Z. Zheng, and X. Lu, “The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3,” Mater. Chem. Phys. 70(2), 156–159 (2001).
[Crossref]

Mater. Lett. (1)

T. Peng, H. Yang, X. Pu, B. Hu, Z. Jiang, and C. Yan, “Combustion synthesis and photoluminescence of SrAl2O4 : Eu, Dy phosphor nanoparticles,” Mater. Lett. 58(3), 352–356 (2004).
[Crossref]

Materials (1)

K. Van den Eeckhout, P.F. Smith, and D. Poelman, “Persistent luminescence in Eu2+ doped compounds: a review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

MJPS (1)

M. Nazarov, “Persistent phosphors for painting, medical and biological applications,” MJPS 12 (N1-2), 102–118 (2013).

Nat. Nanotechnol. (1)

W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle mediated cellular response is size-dependent,” Nat. Nanotechnol. 3(3), 145–150 (2008).
[Crossref] [PubMed]

Phys. Rev. B (1)

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4 : Eu, Dy powders: Evidence for valence state changes,” Phys. Rev. B 84(8), 085140 (2011).
[Crossref]

Radiat. Meas. (1)

V. Chernov, T. M. Piters, R. Melndrez, W. M. Yen, E. Cruz-Zaragoza, and M. Barbosa-Flores, “Photoluminescence, afterglow and thermoluminescence in SrAl2O4 : Eu2+, Dy3+ irradiated with blue and UV light,” Radiat. Meas. 42(4), 668–671 (2007).
[Crossref]

Small (1)

C. J. Lin, R. A. Sperling, J. K. Li, T. Yang, P. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334–341 (2008).
[Crossref] [PubMed]

Solid State Sciences (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, and T. Le Mercier, “On the phosphorescent mechanism in SrAl2O4 : Eu2+ and its codoped derivatives,” Solid State Sciences 9(7), 608–612 (2007).
[Crossref]

Other (2)

N. M. Son, L. T. Thao, L. V. Khoa, and N. N. Trac, “Synthesis of SrAl2O4 : Eu2+, Dy3+ phosphorescence nanosized powder by combustion method and its optical properties,” J. Phys. Conf. Ser.187(1), (2009).
[Crossref]

T. Maldiney, D. Scherman, and C. Richard, “Persistent luminescence nanoparticles for diagnostics and imaging,” ACS: ACS Symp. Ser.Washington (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical arrangement for decay time measurements: The UV-source (λ = 254 nm) excites the powder sample (PS). The emission generated by the PS is collected by a lens and conducted into the monochromator. Within the monochromator the light is guided by a set of lenses. Light is selected in the emission range (λ = 254 nm), and finally detected by a power detector (Det).
Fig. 2
Fig. 2 Excitation spectrum of some SrAl2O4: Eu2+, Dy3+ phosphors (SAOij).
Fig. 3
Fig. 3 Emission spectrum of SrAl2O4: Eu2+, Dy3+ phosphors (SAOij). The first number (i) is for the percentage of europium and the second (j) for dysprosium. Excitation and emission spectra are shown in arbitrary units (A.U.).
Fig. 4
Fig. 4 Central graph: Decay time of SrAl2O4:Eu, Dy phosphors with different percentage of co-dopant, additionally quantum yield (QY) percentage for the SAO11 and SAO13 samples. Right upper inset: decay time curve, where the quantum yield is less than 20% for other do-doped nanophosphors.
Fig. 5
Fig. 5 Fitted curve for decay time in SAO11 and SAO13, in accordance with Eq. 1.
Fig. 6
Fig. 6 X-Ray Diffraction of Strontium Aluminum Oxides (SAOij). According to PCPDFWIN No. 740794 the obtained structure was monoclinic for all nanophosphors.
Fig. 7
Fig. 7 TEM images of SAO11: (a) without the ultrasonication process. The phosphors showed a predominant spherical morphology. (b) After ultrasonication process. The phosphors are more separated after this process.
Fig. 8
Fig. 8 Nanoparticle size distribution. The average size was: a) 18 nm for SAO11, and b) 22 nm for SAO13.
Fig. 9
Fig. 9 Cytotoxic effects of SAO11 and SAO13 nanophosphors on HeLa cells. Cell viability percentage is showing for cells incubated with SAO11 (a) and SAO13 (b). Positive control (C+) represents the viability of cells incubated with RPMI-1640 media under normal conditions. Bars represent the mean and standard deviation of a threefold independent experiments.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 exp ( t τ 1 ) + I 2 exp ( t τ 2 ) ,

Metrics