Abstract

Deep red persistent luminescence properties of Cr3+ activated LaAlO3 phosphors were investigated. The variation of lanthanide codopants, Sm3+, Eu3+, Tm3+ on thermoluminescence (TL) glow curves suggests an electron trap model of persistent luminescence in LaAlO3:Cr3+ phosphors. Between lanthanide cations, Sm3+ was found to be a good codopant for enhanced persistent luminescence. TL excitation spectrum showed only a UV band similar to that of photoluminescence excitation which are attributed to 4A24T1(4P). Based on the structure and intensity of TL glow curves after different wavelength excitation, it is found that the efficient charging through conduction band and inefficient local charging occur under UV and blue excitation, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple magnification effects of Ce3+ ions on near-infrared persistent luminescence of Cr-doped LaAlO3

Yi Zhang, Rui Huang, Zhenxu Lin, Jie Song, Xiang Wang, Yanqing Guo, Chao Song, Ying Yu, and John Robertson
Opt. Mater. Express 6(3) 922-928 (2016)

Photostimulation induced persistent luminescence in Y3Al2Ga3O12:Cr3+

Yumiko Katayama, Bruno Viana, Didier Gourier, Jian Xu, and Setsuhisa Tanabe
Opt. Mater. Express 6(4) 1405-1413 (2016)

Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor

Yumiko Katayama, Jumpei Ueda, and Setsuhisa Tanabe
Opt. Mater. Express 4(4) 613-623 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  2. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
    [Crossref]
  3. K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
    [Crossref]
  4. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
    [Crossref]
  5. Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
    [Crossref]
  6. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  7. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  8. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
    [Crossref] [PubMed]
  9. J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
    [Crossref]
  10. A. M. Srivastava and M. G. Brik, “Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3,” Opt. Mater. 35(8), 1544–1548 (2013).
    [Crossref]
  11. Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
    [Crossref]
  12. P. Dorenbos, “The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds,” J. Phys. Condens. Matter 25(22), 225501 (2013).
    [Crossref] [PubMed]
  13. A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
    [Crossref]
  14. A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
    [Crossref]
  15. A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
    [Crossref]
  16. J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
    [Crossref]
  17. J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
    [Crossref]
  18. A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
    [Crossref]

2015 (4)

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

2014 (5)

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

2013 (4)

K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

P. Dorenbos, “The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds,” J. Phys. Condens. Matter 25(22), 225501 (2013).
[Crossref] [PubMed]

A. M. Srivastava and M. G. Brik, “Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3,” Opt. Mater. 35(8), 1544–1548 (2013).
[Crossref]

2011 (2)

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

2010 (1)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

2001 (1)

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Basavaraju, N.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bessière, A.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Binet, L.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bos, A.

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Bos, A. J. J.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Brik, M. G.

A. M. Srivastava and M. G. Brik, “Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3,” Opt. Mater. 35(8), 1544–1548 (2013).
[Crossref]

Chuang, Y.-J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Dobrowolska, A.

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

Dorenbos, P.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

P. Dorenbos, “The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds,” J. Phys. Condens. Matter 25(22), 225501 (2013).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Drozdowski, W.

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

Glodo, J.

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

Gourier, D.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Jacquart, S.

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Katayama, Y.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Kobayashi, H.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Kuroishi, K.

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Lecointre, A.

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

Liu, F.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Meijerink, A.

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Pan, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Priolkar, K.

Priolkar, K. R.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Richard, C.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Sharma, S. K.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Smet, P. D.

K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Smet, P. F.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Srivastava, A. M.

A. M. Srivastava and M. G. Brik, “Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3,” Opt. Mater. 35(8), 1544–1548 (2013).
[Crossref]

Szupryczynski, P.

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Ueda, J.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

Viana, B.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

Wisniewski, D.

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

Wojtoxicz, A. J.

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

Xie, J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Xu, J.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Yan, W.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zhen, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zhuang, Y.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Appl. Phys. Express (2)

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Katayama, H. Kobayashi, and S. Tanabe, “Deep-red persistent luminescence in Cr3+-doped LaAlO3 perovskite phosphor for in vivo imaging,” Appl. Phys. Express 8(1), 012102 (2015).
[Crossref]

Chem. Mater. (1)

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

J. Electrochem. Soc. (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Ueda, P. Dorenbos, A. Bos, K. Kuroishi, and S. Tanabe, “Control of electron transfer between Ce3+ and Cr3+ in Y3Al5-xGaxO12 host via conduction band engineering,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(22), 5642–5651 (2015).
[Crossref]

J. Phys. Chem. C (2)

J. Ueda, P. Dorenbos, A. J. J. Bos, A. Meijerink, and S. Tanabe, “Insight into the thermal quenching mechanism for Y3Al5O12:Ce3+ through thermoluminescence excitation spectroscopy,” J. Phys. Chem. C 119(44), 25003–25008 (2015).
[Crossref]

A. Lecointre, A. Bessière, A. J. J. Bos, P. Dorenbos, B. Viana, and S. Jacquart, “Designing a red persistent luminescence phosphor: The example of YPO4: Pr3+, Ln3+ (Ln= Nd, Er, Ho, Dy),” J. Phys. Chem. C 115(10), 4217–4227 (2011).
[Crossref]

J. Phys. Condens. Matter (2)

P. Dorenbos, “The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE = La, Gd, Y, Lu, Sc) compounds,” J. Phys. Condens. Matter 25(22), 225501 (2013).
[Crossref] [PubMed]

A. J. Wojtoxicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys. Condens. Matter 13(42), 9599–9619 (2001).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4:Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

Materials (Basel) (2)

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: A Review,” Materials (Basel) 3(4), 2536–2566 (2010).
[Crossref]

K. Van den Eeckhout, D. Poelman, and P. D. Smet, “Persistent luminescence in non-Eu2+-doped compounds: A Review,” Materials (Basel) 6(7), 2789–2818 (2013).
[Crossref]

Nat. Mater. (1)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (2)

A. M. Srivastava and M. G. Brik, “Crystal field studies of the Mn4+ energy levels in the perovskite, LaAlO3,” Opt. Mater. 35(8), 1544–1548 (2013).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Opt. Mater. Express (1)

Sci. Rep. (1)

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) TL glow curves of LaAlO3:0.5%Cr3+ and LaAlO3:0.5%Cr3+-0.05%Ln3+ (Ln = Sm, Eu, Tm) monitoring deep-red Cr3+ luminescence (TL glow curves of LaAlO3:Cr3+ and LaAlO3:Cr3+-Sm3+ are from ref [11].) and (b)VRBE energy diagram for Cr3+ and three lanthanide divalent ions. The VRBE values of band edges and ground state divalent lanthanide ions were adopted from ref [12]. Ex represents excitonic level which is 0.5 eV below the conduction bottom according to the VRBE model.
Fig. 2
Fig. 2 (a) Themoluminescence excitation spectra of the LaAlO3:0.5%Cr3+-0.05%Sm3+ (closed-square line) and PLE spectra of the LaAlO3:0.5%Cr3+ at ambient temperature from ref [11]. (solid curve). (b)Thermoluminescence glow curves of the LaAlO3:0.5Cr3+ −0.05%Sm3+ after different wavelength irradiation from 254 nm to 420 nm with heating rate of 10 K/min.
Fig. 3
Fig. 3 Thermoluminescence glow curves of the LaAlO3:0.5Cr3+ −0.05%Sm3+ just after low temperature 254 nm excitation (solid curve) and 1h after excitation (dashed curve). Inserted figure shows reciprocal persistent luminescence intensity as a function of time at 10 K, 100 K, 300 K and 360 K.
Fig. 4
Fig. 4 Cr3+ content dependence of (a) persistent luminescence intensity 10 min after ceasing excitation light and (b) EPR absorption intensity. Inserted figure shows EPR spectra of Cr3+-Sm3+ codoped sample. Notice that the intensity of LaAlO3:Cr3+ in Fig. 4(a) is 50 times less than those of LaAlO3:Cr3+-Sm3+.

Metrics