Abstract

We study the temperature and pump-intensity dependence of the temporal evolution of photoinduced light scattering in congruent, hafnium-codoped and near-stoichiometric LiNbO3:Fe crystals. A partial self-recovery process is found in the evolution trend of photoinduced light scattering in all crystals at room temperature while it disappears at −190 °C or above 120 °C. Moreover, a “scattering acceleration effect” is found for both Hf-doped and near-stoichiometric crystals. Basing the saturation refractive-index modulation the partial self-recovery process is explained by the slow recombination of light-induced space charges of the noise gratings with high wave vectors. The “scattering acceleration effect” is connected with the activation of the protons located around Fe ions and their impact on the photoconductivity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photorefractive charge compensation in α-phase proton-exchanged LiNbO3 waveguides

A. Méndez, A. Garcı́a-Cabañes, M. Carrascosa, and J. M. Cabrera
J. Opt. Soc. Am. B 17(8) 1412-1419 (2000)

Photorefractive fixing phenomena in alpha-phase proton-exchanged LiNbO3 waveguides

Gonzalo de la Paliza, Jesús Carnicero, Angel García-Cabañes, Mercedes Carrascosa, and José M. Cabrera
J. Opt. Soc. Am. B 22(10) 2229-2236 (2005)

Understanding light intensity thresholds for catastrophic optical damage in LiNbO3

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera
Opt. Express 16(1) 115-120 (2008)

References

  • View by:
  • |
  • |
  • |

  1. I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).
  2. M. Segev, D. Engin, A. Yariv, and G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18(12), 956–958 (1993).
    [Crossref] [PubMed]
  3. H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14(22), 1275–1277 (1989).
    [Crossref] [PubMed]
  4. M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
    [Crossref]
  5. M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
    [Crossref]
  6. M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
    [Crossref]
  7. M. Goulkov and Th. Woike, “Photoelectric response in LiNbO3:Fe versus Fe2+/Fe3+ ratio studied by PILS method,” J. Opt. Soc. Am. B 31(5), 1071–1077 (2014).
    [Crossref]
  8. S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65(4-5), 527–533 (1997).
    [Crossref]
  9. S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
    [Crossref]
  10. S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
    [Crossref]
  11. X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
    [Crossref] [PubMed]
  12. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22(8), 501–503 (1997).
    [Crossref] [PubMed]
  13. H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
    [Crossref]
  14. S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
    [Crossref]
  15. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
    [Crossref]
  16. K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
    [Crossref]
  17. P. A. Augustov and K. K. Shvarts, “Surface Recombination and Photorefraction in LiNbO3:Fe Crystals,” Appl. Phys. (Berl.) 18(4), 399–401 (1979).
    [Crossref]
  18. G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
    [Crossref]
  19. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
    [Crossref]
  20. H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
    [Crossref]

2014 (1)

2010 (1)

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

2008 (2)

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

2006 (3)

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

2004 (1)

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

2002 (1)

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

2001 (3)

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
[Crossref] [PubMed]

1998 (1)

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

1997 (3)

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter, “Photorefractive properties of iron-doped stoichiometric lithium niobate,” Opt. Lett. 22(8), 501–503 (1997).
[Crossref] [PubMed]

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65(4-5), 527–533 (1997).
[Crossref]

1993 (1)

1989 (1)

1986 (1)

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).

1979 (1)

P. A. Augustov and K. K. Shvarts, “Surface Recombination and Photorefraction in LiNbO3:Fe Crystals,” Appl. Phys. (Berl.) 18(4), 399–401 (1979).
[Crossref]

Aillerie, M.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Augustov, P. A.

P. A. Augustov and K. K. Shvarts, “Surface Recombination and Photorefraction in LiNbO3:Fe Crystals,” Appl. Phys. (Berl.) 18(4), 399–401 (1979).
[Crossref]

Bäumer, C.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Bourson, P.

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

Breer, S.

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

Buse, K.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

Chen, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Chen, X.

Delboulbé, A.

Deng, D.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Ellabban, M. A.

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Engin, D.

Fally, M.

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Furukawa, Y.

Gao, G.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Gao, H.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Gao, M.

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

Goulkov, M.

M. Goulkov and Th. Woike, “Photoelectric response in LiNbO3:Fe versus Fe2+/Fe3+ ratio studied by PILS method,” J. Opt. Soc. Am. B 31(5), 1071–1077 (2014).
[Crossref]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Günter, P.

Hang, Z.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Hesse, H.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Huang, H.

Huignard, J. P.

Imbrock, J.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Imlau, M.

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Ji, Y.

Kiseleva, I. N.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).

Kitamura, K.

Kong, Y.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65(4-5), 527–533 (1997).
[Crossref]

Kovacs, L.

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Krätzig, E.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

Li, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

Li, X.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Li, Y.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Liu, H.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Liu, S.

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
[Crossref] [PubMed]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

Mandula, G.

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Medrano, C.

Montemezzani, G.

Nee, I.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

Obukhovskii, V. V.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).

Odoulov, S.

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Odoulov, S. G.

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).

Peithmann, K.

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

Psaltis, D.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

Qiao, H.

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

Rajbenbach, H.

Rupp, R. A.

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

Segev, M.

Sevostyanov, O. G.

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65(4-5), 527–533 (1997).
[Crossref]

Shi, L.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Shvarts, K. K.

P. A. Augustov and K. K. Shvarts, “Surface Recombination and Photorefraction in LiNbO3:Fe Crystals,” Appl. Phys. (Berl.) 18(4), 399–401 (1979).
[Crossref]

Sun, Q.

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

Valley, G. C.

Woike, Th.

M. Goulkov and Th. Woike, “Photoelectric response in LiNbO3:Fe versus Fe2+/Fe3+ ratio studied by PILS method,” J. Opt. Soc. Am. B 31(5), 1071–1077 (2014).
[Crossref]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

Wolfsberger, J.

Xie, X.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Xu, J.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
[Crossref] [PubMed]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

Yan, W.

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Yang, Y.

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

Yariv, A.

Zgonik, M.

Zhang, G.

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
[Crossref] [PubMed]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

Zhang, L.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Zhang, X.

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, and G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe, In crystals,” Appl. Opt. 40(5), 683–686 (2001).
[Crossref] [PubMed]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

P. A. Augustov and K. K. Shvarts, “Surface Recombination and Photorefraction in LiNbO3:Fe Crystals,” Appl. Phys. (Berl.) 18(4), 399–401 (1979).
[Crossref]

Appl. Phys. B (1)

S. M. Kostritskii and O. G. Sevostyanov, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65(4-5), 527–533 (1997).
[Crossref]

Appl. Phys. Lett. (3)

M. A. Ellabban, G. Mandula, M. Fally, R. A. Rupp, and L. Kovacs, “Holographic scattering as a technique to determine the activation energy for thermal fixing in photorefractive materials,” Appl. Phys. Lett. 78(6), 844 (2001).
[Crossref]

S. Li, S. Liu, Y. Kong, J. Xu, and G. Zhang, “Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2 co-doping,” Appl. Phys. Lett. 89(10), 101126 (2006).
[Crossref]

Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and Electronic Dark Decay of Holograms in LiNbO3:Fe Crystals,” Appl. Phys. Lett. 78(26), 4076 (2001).
[Crossref]

J. Appl. Phys. (3)

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LN:Fe,M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392 (1998).
[Crossref]

S. M. Kostritskii, O. G. Sevostyanov, M. Aillerie, and P. Bourson, “Suppression of photorefractive damage with aid of steady-state temperature gradient in nominally pure LiNbO3 crystals,” J. Appl. Phys. 104(11), 114104 (2008).
[Crossref]

S. M. Kostritskii, M. Aillerie, and O. G. Sevostyanov, “Self-compensation of optical damage in reduced nominally pure LiNbO3 crystals,” J. Appl. Phys. 107(12), 123526 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LN:Hf crystals,” J. Phys. Condens. Matter 18(13), 3527–3534 (2006).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (1)

H. Liu, X. Xie, Y. Kong, W. Yan, X. Li, L. Shi, J. Xu, and G. Zhang, “Photorefractive properties of near-stoichiometric lithium niobate crystalsdoped with iron,” Opt. Mater. 28(3), 212–215 (2006).
[Crossref]

Phys. Rev. B (4)

K. Buse, S. Breer, K. Peithmann, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56(3), 1225–1235 (1997).
[Crossref]

H. Qiao, J. Xu, G. Zhang, X. Zhang, Q. Sun, and G. Zhang, “Ultraviolet photorefractivity features in doped lithium niobate crystals,” Phys. Rev. B 70(9), 094101 (2004).
[Crossref]

M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
[Crossref]

M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77(23), 235110 (2008).
[Crossref]

Sov. Phys. Solid State (1)

I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Raman spectra (a), OH absorption bands (b) and UV-VIS spectra (c) of CLN:Fe, CLN:Fe:Hf and SLN:Fe. (d) Experimental arrangement for PILS measurement.
Fig. 2
Fig. 2 (a) PILS curves for three samples at room temperature. (b) PILS curves for CLN:Fe at different temperatures. (c) The illumination was paused during period from 2280 to 2418s in CLN:Fe under air.
Fig. 3
Fig. 3 PILS curves at different temperatures and pump intensity for (a)-(c)SLN:Fe and (d)-(f) CLN:Fe:Hf.

Metrics