Abstract

A mid-infrared Er doped CaF2 crystal was successfully grown by the bridgeman method. Efficiently continuous wave and Q-switched laser operations were demonstrated at 2.8 μm with a 4 at.% Er doped CaF2 crystal end-pumped by a fiber-coupled 974 nm diode laser. The continuous wave output power of 295 mW was obtained in a compact linear cavity. A stable 2.8 μm passively Q-switched Er:CaF2 laser was also demonstrated with a graphene saturable absorber. Under an absorbed pump power of 2.353 W, an average output power of 172 mW was generated with a pulse duration of 1.324 μs and a repetition rate of 62.70 kHz, corresponding to the single pulse energy of 2.74 μJ and the peak power of 2.07 W, respectively. The high-quality Er:CaF2 crystal and the monolayer graphene are an ideal combination to directly obtain a near 3 μm mid-infrared region pulse laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7  μm

Xiaofeng Guan, Linjie Zhan, Zhenwei Zhu, Bin Xu, Huiying Xu, Zhiping Cai, Weiwei Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Appl. Opt. 57(3) 371-376 (2018)

Few-layered MoS2 as a saturable absorber for a passively Q-switched Er:YAG laser at 1.6  μm

Hongwang Xia, Ming Li, Tao Li, Shengzhi Zhao, Guiqiu Li, and Kejian Yang
Appl. Opt. 56(10) 2766-2770 (2017)

Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser

Jingjing Liu, Xiuwei Fan, Jie Liu, Weiwei Ma, Jingya Wang, and Liangbi Su
Opt. Lett. 41(20) 4660-4663 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Li, K. Beil, C. Kränkel, C. Brandt, and G. Huber, “Laser performance of highly doped Er:Lu2O3 at 2.8 µm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2012), paper AW5A.6.
  2. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref] [PubMed]
  3. T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
    [Crossref]
  4. C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
    [Crossref]
  5. W. W. Ma, L. B. Su, J. Y. Wang, D. P. Jiang, X. D. Xu, and J. Xu, “The concentration effect on spectroscopic properties of Er:CaF2 crystals,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015), paper AM5A.17.
  6. S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
    [Crossref]
  7. G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
    [Crossref]
  8. L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
    [Crossref]
  9. P. Xie and S. C. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15(15), 848–850 (1990).
    [Crossref] [PubMed]
  10. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  11. Y. G. Wang, Z. S. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high-power passive mode-locked Nd:GdVO4 laser operating at 1 μm,” J. Lightwave Technol. 30(20), 3259–3262 (2012).
    [Crossref]
  12. X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011).
    [Crossref]
  13. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
    [Crossref] [PubMed]
  14. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
    [Crossref] [PubMed]
  15. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  16. M. Q. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Kränkel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 μm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
    [Crossref] [PubMed]
  17. X. Zheng, R. Chen, G. Shi, J. Zhang, Z. Xu, X. Cheng, and T. Jiang, “Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements,” Opt. Lett. 40(15), 3480–3483 (2015).
    [Crossref] [PubMed]
  18. B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
    [Crossref] [PubMed]
  19. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  20. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  21. H. Yu, X. Zheng, K. Yin, X. A. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6(2), 603–609 (2016).
    [Crossref]
  22. Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
    [Crossref] [PubMed]
  23. Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
    [Crossref]
  24. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
    [Crossref]
  25. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [Crossref] [PubMed]
  26. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  27. G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  28. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  29. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G. R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20(3), 2460–2465 (2012).
    [Crossref] [PubMed]
  30. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er-and Tm-doped fiber lasers,” Opt. Mater. Express 5(12), 2884–2894 (2015).
    [Crossref]
  31. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
    [Crossref] [PubMed]
  32. G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
    [Crossref]
  33. W. W. Ma, L. B. Su, X. D. Xu, J. Y. Wang, D. P. Jiang, L. H. Zheng, X. W. Fan, C. Li, J. Liu, and J. Xu, “Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals,” Opt. Mater. Express 6(2), 409–415 (2016).
    [Crossref]
  34. W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
    [Crossref]

2016 (6)

2015 (5)

2014 (2)

2013 (3)

2012 (3)

2011 (2)

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

2009 (3)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

2008 (1)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

2006 (1)

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

2002 (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

2001 (1)

1990 (1)

1978 (1)

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

1976 (1)

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

1975 (1)

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Abramski, K. M.

Alimov, O. K.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Bae, S.

Balakrishnan, K.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Bao, Q. L.

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Basiev, T. T.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Batygov, S. K.

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Bian, J.

Cai, W.

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Camy, P.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Chandrashekhar, M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Chen, R.

Chen, S.

Chen, Y.

Cheng, W. H.

Cheng, X.

Cheng, X. A.

Cizmeciyan, M. N.

Dawlaty, J. M.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Dergachev, A. Y.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Doualan, J. L.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Du, J.

Ernst, H.

Ertmer, W.

Fan, M. Q.

Fan, X. W.

Fan, Y.

Fedorov, P. P.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Gao, W. L.

Gao, X. C.

Gnatyuk, L. N.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

Gomelauri, G. V.

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

Guo, X. L.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

Gurari, M. L.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

He, J.

Hong, B. H.

Hou, J.

Huang, P. L.

Huang, S. H.

Huber, G.

Jiang, D. P.

Jiang, S. Z.

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Jiang, T.

Kim, J. W.

Konyushkin, V. A.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Krajewska, A.

Kränkel, C.

Kulevskii, L. A.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Kuo, H. H.

Kuznetsov, S. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Labbe, C.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Li, C.

W. W. Ma, L. B. Su, X. D. Xu, J. Y. Wang, D. P. Jiang, L. H. Zheng, X. W. Fan, C. Li, J. Liu, and J. Xu, “Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals,” Opt. Mater. Express 6(2), 409–415 (2016).
[Crossref]

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Li, G. Q.

Li, J.

Li, L. J.

Li, T.

Li, Y.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

Li, Y. Q.

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Lin, G. R.

Lin, S. C.

Liu, H.

Liu, J.

Liu, M.

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Lou, F.

Lu, S.

Lu, S. B.

Lubatschowski, H.

Luo, A. P.

Luo, Z. C.

Lv, P.

Ma, H. Y.

Ma, J.

Ma, W. W.

Marchenko, S. N.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

Moncorgé, R.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Ni, Z. H.

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Nie, J.

Ning, J.

Norwood, R. A.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Orlovskii, Y. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Osiko, V. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Pasternak, I.

Peyghambarian, N.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Polavarapu, L.

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Polyachenkova, M. V.

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Prokhorov, A. M.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Qi, X. L.

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[Crossref]

Qian, L.

Qian, L. J.

Qin, Z.

Qu, Z. S.

Rana, F.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Rand, S. C.

Rotermund, F.

Savel’ev, A. D.

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Sennaroglu, A.

Shen, Z. X.

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, G.

Shivaraman, S.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Smirnov, V. V.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

Sobon, G.

Sotor, J.

Spencer, M. G.

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

Stepanov, B. M.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

Strupinski, W.

Su, C. Y.

Su, L. B.

W. W. Ma, L. B. Su, X. D. Xu, J. Y. Wang, D. P. Jiang, L. H. Zheng, X. W. Fan, C. Li, J. Liu, and J. Xu, “Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals,” Opt. Mater. Express 6(2), 409–415 (2016).
[Crossref]

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Su, X.

Tang, D.

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Tang, R.

Thuau, M.

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Tsang, Y. H.

Wang, F. Q.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

Wang, F. Z.

Wang, J. Y.

Wang, Y.

Z. Wang, R. Zhao, J. He, B. Zhang, J. Ning, Y. Wang, X. Su, J. Hou, F. Lou, K. Yang, Y. Fan, J. Bian, and J. Nie, “Multi-layered black phosphorus as saturable absorber for pulsed Cr:ZnSe laser at 2.4 μm,” Opt. Express 24(2), 1598–1603 (2016).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Y. G.

Wang, Z.

Welling, H.

Wen, S.

Wen, S. C.

Will, G. F.

Xie, G.

Xie, G. Q.

Xie, P.

Xu, J.

W. W. Ma, L. B. Su, X. D. Xu, J. Y. Wang, D. P. Jiang, L. H. Zheng, X. W. Fan, C. Li, J. Liu, and J. Xu, “Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals,” Opt. Mater. Express 6(2), 409–415 (2016).
[Crossref]

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Xu, Q. H.

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Xu, S.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

Xu, S. C.

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Xu, W. C.

Xu, X. D.

Xu, Z.

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, K.

Yeh, C. Y.

Yin, K.

Yu, H.

Yu, H. H.

Yuan, P.

Zhang, B.

Zhang, H.

Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
[Crossref] [PubMed]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

Zhang, H. J.

Zhang, J.

Zhang, S. C.

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[Crossref]

Zhao, C.

Zhao, C. J.

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
[Crossref] [PubMed]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhao, R.

Zhao, S. Z.

Zheng, J.

Zheng, L. H.

W. W. Ma, L. B. Su, X. D. Xu, J. Y. Wang, D. P. Jiang, L. H. Zheng, X. W. Fan, C. Li, J. Liu, and J. Xu, “Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er:CaF2 crystals,” Opt. Mater. Express 6(2), 409–415 (2016).
[Crossref]

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Zheng, X.

Zhiganov, V. N.

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

Zhu, G. W.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Zhu, X. S.

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

G. W. Zhu, X. S. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
[Crossref]

Ziolek, C.

Zou, Y.

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Appl. Phys. Lett. (2)

J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92(4), 042116 (2008).
[Crossref]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

IEEE Photonic. Tech. L. (1)

G. W. Zhu, X. S. Zhu, F. Q. Wang, S. Xu, Y. Li, X. L. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8 μm,” IEEE Photonic. Tech. L. 20(1), 7–10 (2016).
[Crossref]

J. Lightwave Technol. (1)

Nano Res. (1)

Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4(3), 297–307 (2011).
[Crossref]

Opt. Commun. (1)

C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, “The 2.8 μm laser properties of Er3+ doped CaF2 crystals,” Opt. Commun. 209(1–3), 193–199 (2002).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

W. Cai, S. Z. Jiang, S. C. Xu, Y. Q. Li, J. Liu, C. Li, L. H. Zheng, L. B. Su, and J. Xu, “Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser,” Opt. Laser Technol. 65, 1–4 (2015).
[Crossref]

Opt. Lett. (8)

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
[Crossref] [PubMed]

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

M. Q. Fan, T. Li, S. Z. Zhao, G. Q. Li, H. Y. Ma, X. C. Gao, C. Kränkel, and G. Huber, “Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 μm using MoS2,” Opt. Lett. 41(3), 540–543 (2016).
[Crossref] [PubMed]

X. Zheng, R. Chen, G. Shi, J. Zhang, Z. Xu, X. Cheng, and T. Jiang, “Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements,” Opt. Lett. 40(15), 3480–3483 (2015).
[Crossref] [PubMed]

B. Zhang, F. Lou, R. Zhao, J. He, J. Li, X. Su, J. Ning, and K. Yang, “Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser,” Opt. Lett. 40(16), 3691–3694 (2015).
[Crossref] [PubMed]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-microm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
[Crossref] [PubMed]

P. Xie and S. C. Rand, “Continuous-wave, pair-pumped laser,” Opt. Lett. 15(15), 848–850 (1990).
[Crossref] [PubMed]

Opt. Mater. Express (5)

Quantum Electron. (1)

T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, and A. Y. Dergachev, “Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals,” Quantum Electron. 36(7), 591–594 (2006).
[Crossref]

Rev. Mod. Phys. (1)

X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83(4), 1057–1110 (2011).
[Crossref]

Sov. J. Quantum Electron. (3)

S. K. Batygov, L. A. Kulevskii, A. M. Prokhorov, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Erbium-doped CaF2 crystal laser operating at room temperature,” Sov. J. Quantum Electron. 4(12), 1469–1470 (1975).
[Crossref]

G. V. Gomelauri, L. A. Kulevskii, V. V. Osiko, A. D. Savel’ev, and V. V. Smirnov, “Single-mode Q-switched CaF2:Er3+ laser,” Sov. J. Quantum Electron. 6(3), 341–342 (1976).
[Crossref]

L. N. Gnatyuk, M. L. Gurari, V. N. Zhiganov, L. A. Kulevskii, S. N. Marchenko, A. M. Prokhorov, V. V. Smirnov, and B. M. Stepanov, “Formation of holograms at the wavelength of 2.76 μ and measurement of the width of the emission line of a CaF2:Er3+ crystal laser by a holographic method,” Sov. J. Quantum Electron. 8(1), 94–95 (1978).
[Crossref]

Other (2)

T. Li, K. Beil, C. Kränkel, C. Brandt, and G. Huber, “Laser performance of highly doped Er:Lu2O3 at 2.8 µm,” in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2012), paper AW5A.6.

W. W. Ma, L. B. Su, J. Y. Wang, D. P. Jiang, X. D. Xu, and J. Xu, “The concentration effect on spectroscopic properties of Er:CaF2 crystals,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2015), paper AM5A.17.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The room-temperature spectra of 4 at.%Er:CaF2. (a) The absorption spectra. (b) The emission spectra.
Fig. 2
Fig. 2 Experiment setup of Q-Switched Er:CaF2 laser.
Fig. 3
Fig. 3 Input-output characteristics of CW and Q-switched Er:CaF2 diode-pumped laser.
Fig. 4
Fig. 4 The pulse width and the repetition rate as a function of the absorbed pump power.
Fig. 5
Fig. 5 Typical pulse profile of the Q-switching at the absorbed pump power of 2.353 W.

Metrics