Abstract

For the first time thick orientation-patterned GaP (OPGaP) was repeatedly grown heteroepitaxially on OPGaAs templates as a quasi-phase matched medium for frequency conversion in the mid and longwave IR, and THz regions. The OP templates were fabricated by wafer-bonding and in a MBE-assisted polarity inversion process. Standard low-pressure hydride vapor phase epitaxy (LP-HVPE) was used for one-step growth of up to 400 µm thick device quality OPGaP with excellent domain fidelity. The presented results can be viewed as the missing link between a well-developed technique for preparation of OP templates, using one robust nonlinear optical material (GaAs), and the subsequent thick epitaxial growth on them of another material (GaP). The reason for these efforts is that the second material has some indisputable advantages in point of view of thermal and optical properties but the preparation of native templates encounters challenges, which makes it difficult to obtain high quality homoepitaxial growth at an affordable price. Successful heteroepitaxial growth at such a relatively high lattice mismatch (- 3.6%) in a close to equilibrium growth process such as HVPE is noteworthy, especially when previously reported attempts, for example, growth of OPZnSe on OPGaAs templates at about 10 times smaller lattice mismatch ( + 0.3%) have produced only limited results. Combining the advantages of the two most promising nonlinear materials, GaAs and GaP, is a solution that will accelerate the development of high power, tunable laser sources for the IR and THz region, which are in great demand on the market.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion

Arnaud Grisard, Eric Lallier, and Bruno Gérard
Opt. Mater. Express 2(8) 1020-1025 (2012)

Longwave-IR optical parametric oscillator in orientation-patterned GaAs pumped by a 2 µm Tm,Ho:YLF laser

R. K. Feaver, R. D. Peterson, and P. E. Powers
Opt. Express 21(13) 16104-16110 (2013)

Difference frequency generation of 8-µm radiation in orientation-patterned GaAs

O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn
Opt. Lett. 27(23) 2091-2093 (2002)

References

  • View by:
  • |
  • |
  • |

  1. K. Thyagarajan, and A. Ghatak, Lasers: Fundamentals and Applications (Springer, 2011).
  2. T. Maiman, “Stimulated Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  3. T. Tacke, “Lead Laser Sources,” Philos. Trans. R. Soc. Lond. A 359(1780), 547–566 (2001).
    [Crossref]
  4. H. Kildal and J. C. Mikkelsen, “The nonlinear coefficient phase matching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
    [Crossref]
  5. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  6. A. Grisard, E. Lallier, and B. Gerard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2(8), 1020–1026 (2012).
    [Crossref]
  7. W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
    [Crossref] [PubMed]
  8. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  9. F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).
  10. I. Tomita, “Fabrication and characterization of a quasi-phase matched GaP optical device for terahertz-wave generation,” Opt. Mater. 32(2), 323–328 (2009).
    [Crossref]
  11. T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
    [Crossref]
  12. P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).
  13. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
    [Crossref]
  14. R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
    [Crossref]
  15. K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
    [Crossref]
  16. T. Nakayama, “Electronic Structures of Heterovalent (001) Semiconductor Superlattices: GaP/ZnS and GaAs/ZnSe,” J. Phys. Soc. Jpn. 61(7), 2458–2468 (1992).
    [Crossref]
  17. T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
    [Crossref]
  18. T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
    [Crossref]
  19. M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
    [Crossref]
  20. C. C. Wang and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates,” J. Cryst. Growth 13, 262–267 (1972).
    [Crossref]
  21. W. G. Oldham, “Vapor growth of GaP on GaAs substrates,” J. Appl. Phys. 36(9), 2887–2890 (1965).
    [Crossref]
  22. W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
    [Crossref]
  23. D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
    [Crossref]
  24. V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
    [Crossref]
  25. V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
    [Crossref]
  26. V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
    [Crossref]
  27. V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
    [Crossref]
  28. V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
    [Crossref]
  29. H. Sang, M. Li, X. Yu, and J. Zhou, “Study of intensity-dependent nonlinear optical coefficients of GaP optical crystal at 800 nm by femtosecond pump-probe experiment,” Chin. Opt. Lett. 4(9), 536–538 (2006).
  30. F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).
  31. K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
  32. F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
    [Crossref]
  33. K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
    [Crossref]
  34. S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
    [Crossref]
  35. B. A. Joyce and D. D. Vvedensky, “Self-organized growth on GaAs surfaces,” Mater. Sci. Eng. 46(6), 127–176 (2004).
    [Crossref]
  36. N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
    [Crossref]
  37. I. Markov, Crystal Growth for Beginners (World Scientific, 2008).
  38. O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
    [Crossref]
  39. F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
    [Crossref] [PubMed]
  40. D. B. Holt, “Misfit dislocations in semiconductors,” J. Phys. Chem. Solids 27(6-7), 1053–1067 (1966).
    [Crossref]
  41. I. Markov and A. Milchev, “The effect of anharmonicity in epitaxial interfaces: Equilibrium structure of thin epitaxial films,” Surf. Sci. 136(2-3), 519–531 (1984).
    [Crossref]
  42. A. Zangwill, Physics at Surfaces (Cambridge University Press, 1988).
  43. H. Ibach, “Adsorbate-induced surface stress,” J. Vac. Sci. Technol. A 12(4), 2240–2246 (1994).
    [Crossref]
  44. F. C. Frank and J. H. van der Merwe, “One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model,” Proc. R. Soc. Lond. A Math. Phys. Sci. 200(1060), 125–134 (1949).
    [Crossref]
  45. V. Tassev and R. Peterson, Non-provisional patent “Heteroepitaxial Growth of Orientation-Patterned Materials on Orientation-Patterned Foreign Substrates,” filed with the U.S. Patent and Trademark Office on Nov 06, 14934636 (2015).
  46. V. Tassev and R. Peterson, Provisional patent “Heteroepitaxial Growth of Thick Orientation-Patterned GaP on Orientation-Patterned GaAs,” filed with the U.S. Patent and Trademark Office on June 23, 62076520 (2015).
  47. V. Tassev and R. Peterson, Provisional patent “Heteroepitaxial Growth of Thick Orientation-Patterned GaP on Orientation-Patterned GaAs,” filed with the U.S. Patent and Trademark Office on Nov. 07, 62183208 (2014).

2015 (2)

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

2014 (1)

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

2013 (1)

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

2012 (2)

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

A. Grisard, E. Lallier, and B. Gerard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2(8), 1020–1026 (2012).
[Crossref]

2011 (4)

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
[Crossref] [PubMed]

2010 (4)

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

2009 (2)

I. Tomita, “Fabrication and characterization of a quasi-phase matched GaP optical device for terahertz-wave generation,” Opt. Mater. 32(2), 323–328 (2009).
[Crossref]

T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
[Crossref]

2008 (1)

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

2004 (1)

B. A. Joyce and D. D. Vvedensky, “Self-organized growth on GaAs surfaces,” Mater. Sci. Eng. 46(6), 127–176 (2004).
[Crossref]

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

2001 (1)

T. Tacke, “Lead Laser Sources,” Philos. Trans. R. Soc. Lond. A 359(1780), 547–566 (2001).
[Crossref]

2000 (1)

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

1999 (1)

O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
[Crossref]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1996 (1)

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

1994 (1)

H. Ibach, “Adsorbate-induced surface stress,” J. Vac. Sci. Technol. A 12(4), 2240–2246 (1994).
[Crossref]

1992 (1)

T. Nakayama, “Electronic Structures of Heterovalent (001) Semiconductor Superlattices: GaP/ZnS and GaAs/ZnSe,” J. Phys. Soc. Jpn. 61(7), 2458–2468 (1992).
[Crossref]

1988 (1)

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

1987 (1)

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

1984 (1)

I. Markov and A. Milchev, “The effect of anharmonicity in epitaxial interfaces: Equilibrium structure of thin epitaxial films,” Surf. Sci. 136(2-3), 519–531 (1984).
[Crossref]

1973 (1)

H. Kildal and J. C. Mikkelsen, “The nonlinear coefficient phase matching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

1972 (1)

C. C. Wang and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates,” J. Cryst. Growth 13, 262–267 (1972).
[Crossref]

1969 (1)

D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
[Crossref]

1966 (1)

D. B. Holt, “Misfit dislocations in semiconductors,” J. Phys. Chem. Solids 27(6-7), 1053–1067 (1966).
[Crossref]

1965 (1)

W. G. Oldham, “Vapor growth of GaP on GaAs substrates,” J. Appl. Phys. 36(9), 2887–2890 (1965).
[Crossref]

1960 (1)

T. Maiman, “Stimulated Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

1959 (1)

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

1949 (1)

F. C. Frank and J. H. van der Merwe, “One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model,” Proc. R. Soc. Lond. A Math. Phys. Sci. 200(1060), 125–134 (1949).
[Crossref]

Bachmann, K. J.

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Bedford, R.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

Berghmans, A.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Bliss, D.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Bryant, G.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

Castleberry, H.

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Chai, L.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

D’Orsogna, M. R.

O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
[Crossref]

Deng, Y.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

Dietz, N.

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

Dietza, N.

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Dimmock, J. O.

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

Einstein, T. L.

O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
[Crossref]

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fejer, M.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Fejer, M. M.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref] [PubMed]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Ferreira, S. C.

F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
[Crossref] [PubMed]

Ferreira, S. O.

F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
[Crossref] [PubMed]

Frank, F. C.

F. C. Frank and J. H. van der Merwe, “One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model,” Proc. R. Soc. Lond. A Math. Phys. Sci. 200(1060), 125–134 (1949).
[Crossref]

Frosch, C. J.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

Gerard, B.

A. Grisard, E. Lallier, and B. Gerard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2(8), 1020–1026 (2012).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Gershenzon, M.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

Gibbs, D. F.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

Goodhue, W.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

Grisard, A.

Hagino, N.

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Haraguchi, T.

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

Harris, J.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Harris, J. S.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Holmstrom, R.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Holt, D. B.

D. B. Holt, “Misfit dislocations in semiconductors,” J. Phys. Chem. Solids 27(6-7), 1053–1067 (1966).
[Crossref]

Hu, M.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

Hurlbut, W. C.

Ibach, H.

H. Ibach, “Adsorbate-induced surface stress,” J. Vac. Sci. Technol. A 12(4), 2240–2246 (1994).
[Crossref]

Ishikawa, K.

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Jimbo, T.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

Joyce, B. A.

B. A. Joyce and D. D. Vvedensky, “Self-organized growth on GaAs surfaces,” Mater. Sci. Eng. 46(6), 127–176 (2004).
[Crossref]

Kahler, D.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Kanner, G.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Kelley, S.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Kildal, H.

H. Kildal and J. C. Mikkelsen, “The nonlinear coefficient phase matching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

Kimani, M.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Knuteson, D.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Kohama, Y.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

Kondo, T.

T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
[Crossref]

Kuo, P. S.

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref] [PubMed]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lallier, E.

A. Grisard, E. Lallier, and B. Gerard, “Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion,” Opt. Mater. Express 2(8), 1020–1026 (2012).
[Crossref]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Leal, F. F.

F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
[Crossref] [PubMed]

Lee, Y. S.

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Li, M.

Li, Y.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Lin, A.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Lind, A.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

Liu, F.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

Lynch, C.

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

Madarasz, F. L.

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

Maeda, Y.

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Magarrell, D. J.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Maiman, T.

T. Maiman, “Stimulated Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Mann, M.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Manna, M.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

Markov, I.

I. Markov and A. Milchev, “The effect of anharmonicity in epitaxial interfaces: Equilibrium structure of thin epitaxial films,” Surf. Sci. 136(2-3), 519–531 (1984).
[Crossref]

Matsushita, T.

T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
[Crossref]

McCarthy, J. C.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

McFarlane, S. H.

C. C. Wang and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates,” J. Cryst. Growth 13, 262–267 (1972).
[Crossref]

Meada, K.

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

Mikkelsen, J. C.

H. Kildal and J. C. Mikkelsen, “The nonlinear coefficient phase matching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

Milchev, A.

I. Markov and A. Milchev, “The effect of anharmonicity in epitaxial interfaces: Equilibrium structure of thin epitaxial films,” Surf. Sci. 136(2-3), 519–531 (1984).
[Crossref]

Miyao, M.

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Nakayama, T.

T. Nakayama, “Electronic Structures of Heterovalent (001) Semiconductor Superlattices: GaP/ZnS and GaAs/ZnSe,” J. Phys. Soc. Jpn. 61(7), 2458–2468 (1992).
[Crossref]

Nomura, T.

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Ohta, I.

T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
[Crossref]

Oldham, W. G.

W. G. Oldham, “Vapor growth of GaP on GaAs substrates,” J. Appl. Phys. 36(9), 2887–2890 (1965).
[Crossref]

Ozeki, M.

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

Peterson, R.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Pierre-Louis, O.

O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
[Crossref]

Pikhtin, A. N.

D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
[Crossref]

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Pomeranz, L. A.

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Rossow, U.

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Sang, H.

Schepler, K.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Schepler, K. L.

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

Schunemann, P.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

Schunemann, P. G.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

Singh, N.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Snure, M.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Soga, T.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

Spitzer, W. G.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

Sukidi, N.

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Sun, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Tacke, T.

T. Tacke, “Lead Laser Sources,” Philos. Trans. R. Soc. Lond. A 359(1780), 547–566 (2001).
[Crossref]

Tajima, M.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

Takeuchi, T.

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

Tassev, V.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Termkoa, K.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

Tetlak, S.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

Tomich, D.

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

Tomita, I.

I. Tomita, “Fabrication and characterization of a quasi-phase matched GaP optical device for terahertz-wave generation,” Opt. Mater. 32(2), 323–328 (2009).
[Crossref]

Uchida, K.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

Ulyanov, V. I.

D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
[Crossref]

Umeno, M.

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

van der Merwe, J. H.

F. C. Frank and J. H. van der Merwe, “One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model,” Proc. R. Soc. Lond. A Math. Phys. Sci. 200(1060), 125–134 (1949).
[Crossref]

Vangala, S.

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

Vangala, S. R.

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Vodopyanov, K. L.

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref] [PubMed]

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Vvedensky, D. D.

B. A. Joyce and D. D. Vvedensky, “Self-organized growth on GaAs surfaces,” Mater. Sci. Eng. 46(6), 127–176 (2004).
[Crossref]

Wagner, B.

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

Wang, C.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

Wang, C. C.

C. C. Wang and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates,” J. Cryst. Growth 13, 262–267 (1972).
[Crossref]

Xing, Q.

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Yapp, C.

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

Yasakov, D. A.

D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
[Crossref]

Yu, X.

Zawilski, K. T.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Zelmon, D. E.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

Zhou, J.

Appl. Phys. Express (1)

T. Matsushita, I. Ohta, and T. Kondo, “Quasi-Phase-Matched Parametric Fluorescence in a Periodically Inverted GaP Waveguide,” Appl. Phys. Express 2, 0611011 (2009).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

J. Appl. Phys. (3)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000).

W. G. Oldham, “Vapor growth of GaP on GaAs substrates,” J. Appl. Phys. 36(9), 2887–2890 (1965).
[Crossref]

J. Cryst. Growth (6)

T. Soga, Y. Kohama, K. Uchida, M. Tajima, T. Jimbo, and M. Umeno, “MOCVD growth and characterization of GaAs and GaP on Si substrates,” J. Cryst. Growth 91(1-4), 499–503 (1988).
[Crossref]

M. Ozeki, T. Haraguchi, T. Takeuchi, and K. Meada, “A comparative study of the growth mechanism of InAs/GaAs and GaP/GaAs heterostructures and strained layered super lattices by atomic layer epitaxy,” J. Cryst. Growth 276(3/4), 374–380 (2005).
[Crossref]

C. C. Wang and S. H. McFarlane, “Epitaxial growth and characterization of GaP on insulating substrates,” J. Cryst. Growth 13, 262–267 (1972).
[Crossref]

V. Tassev, M. Snure, R. Peterson, R. Bedford, D. Bliss, G. Bryant, M. Mann, W. Goodhue, S. Vangala, K. Termkoa, A. Lin, J. S. Harris, M. M. Fejer, C. Yapp, and S. Tetlak, “Epitaxial growth of quasi-phasematched GaP for nonlinear applications: Systematic process improvements,” J. Cryst. Growth 352(1), 72–77 (2012).
[Crossref]

V. Tassev, D. Bliss, C. Lynch, C. Yapp, W. Goodhue, and K. Termkoa, “Low pressure temperature gas flow HVPE growth of GaP for nonlinear optical frequency conversion devices,” J. Cryst. Growth 312(8), 1146–1149 (2010).
[Crossref]

N. Singh, G. Kanner, A. Berghmans, D. Kahler, A. Lin, B. Wagner, S. Kelley, D. Knuteson, R. Holmstrom, K. Schepler, R. Peterson, M. Fejer, and J. Harris, “Characteristics of thick ZnSe films on quasi-phase-matched (QPM) GaAs substrates,” J. Cryst. Growth 312(8), 1142–1145 (2010).
[Crossref]

J. Eur. Opt. Soc. (1)

V. Tassev, D. Bliss, M. Snure, G. Bryant, R. Peterson, R. Bedford, C. Yapp, W. Goodhue, and K. Termkoa, “HVPE growth and characterization of GaP on different substrates and patterned templates for frequency conversion devices,” J. Eur. Opt. Soc. 6, 110171 (2011).
[Crossref]

J. Opt. (2)

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12, 095201 (2010).

F. Liu, Y. Li, Q. Xing, L. Chai, M. Hu, C. Wang, Y. Deng, Q. Sun, and C. Wang, “Three-photon absorption and Kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

J. Phys. Chem. Solids (2)

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11(3-4), 339–341 (1959).
[Crossref]

D. B. Holt, “Misfit dislocations in semiconductors,” J. Phys. Chem. Solids 27(6-7), 1053–1067 (1966).
[Crossref]

J. Phys. Condens. Matter (1)

F. F. Leal, S. C. Ferreira, and S. O. Ferreira, “Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height,” J. Phys. Condens. Matter 23(29), 292201 (2011).
[Crossref] [PubMed]

J. Phys. Soc. Jpn. (1)

T. Nakayama, “Electronic Structures of Heterovalent (001) Semiconductor Superlattices: GaP/ZnS and GaAs/ZnSe,” J. Phys. Soc. Jpn. 61(7), 2458–2468 (1992).
[Crossref]

J. Vac. Sci. Technol. A (1)

H. Ibach, “Adsorbate-induced surface stress,” J. Vac. Sci. Technol. A 12(4), 2240–2246 (1994).
[Crossref]

J. Vac. Sci. Technol. B (1)

K. J. Bachmann, U. Rossow, N. Sukidi, H. Castleberry, and N. Dietza, “Heteroepitaxy of GaP on Si (100),” J. Vac. Sci. Technol. B 14(4), 3019–3029 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nomura, Y. Maeda, M. Miyao, N. Hagino, and K. Ishikawa, “Accommodation of large lattice mismatch of GaP on GaAs (100) and GaAs on GaP (100) layers grown by MBE,” Jpn. J. Appl. Phys. 26(6), 908–911 (1987).
[Crossref]

Mater. Res. Bull. (1)

D. A. Yasakov, A. N. Pikhtin, and V. I. Ulyanov, “Optical properties of gallium phosphide grown by floating zone,” Mater. Res. Bull. 4(11), 839–848 (1969).
[Crossref]

Mater. Sci. Eng. (1)

B. A. Joyce and D. D. Vvedensky, “Self-organized growth on GaAs surfaces,” Mater. Sci. Eng. 46(6), 127–176 (2004).
[Crossref]

Nature (1)

T. Maiman, “Stimulated Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Opt. Commun. (1)

H. Kildal and J. C. Mikkelsen, “The nonlinear coefficient phase matching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9(3), 315–318 (1973).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (3)

I. Tomita, “Fabrication and characterization of a quasi-phase matched GaP optical device for terahertz-wave generation,” Opt. Mater. 32(2), 323–328 (2009).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).
[Crossref]

K. Termkoa, S. Vangala, W. Goodhue, R. Peterson, R. Bedford, V. Tassev, C. Lynch, and D. Bliss, “Orientation-patterned GaP using wafer fusion technique,” Opt. Mater. 34, 30–35 (2011).

Opt. Mater. Express (1)

Philos. Trans. R. Soc. Lond. A (1)

T. Tacke, “Lead Laser Sources,” Philos. Trans. R. Soc. Lond. A 359(1780), 547–566 (2001).
[Crossref]

Phys. Rev. Lett. (1)

O. Pierre-Louis, M. R. D’Orsogna, and T. L. Einstein, “Edge Diffusion during Growth: The Kink Ehrlich-Schwoebel Effect and Resulting Instabilities,” Phys. Rev. Lett. 82(18), 3661–3664 (1999).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

F. C. Frank and J. H. van der Merwe, “One-Dimensional Dislocations. III. Influence of the Second Harmonic Term in the Potential Representation, on the Properties of the Model,” Proc. R. Soc. Lond. A Math. Phys. Sci. 200(1060), 125–134 (1949).
[Crossref]

Proc. SPIE (5)

V. Tassev, M. Snure, R. Peterson, K. L. Schepler, R. Bedford, M. Manna, S. Vangala, W. Goodhue, A. Lind, J. Harris, M. Fejer, and P. Schunemann, “Progress in orientation-patterned GaP for next-generation nonlinear optical devices,” Proc. SPIE 8604, 86040V (2013).
[Crossref]

V. Tassev, M. Snure, S. Vangala, M. Kimani, R. Peterson, and P. Schunemann, “Growth and study of nonlinear optical materials for frequency conversion devices with applications in defense and security,” Proc. SPIE 9253, 925318 (2014).
[Crossref]

P. G. Schunemann, L. A. Pomeranz, and D. J. Magarrell, “Optical parametric oscillation in quasi-phase-matched GaP,” Proc. SPIE 9347, 93470J (2015).

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-µm-pumped OPO based on orientation-patterned GaP,” Proc. SPIE 9347, 93470K (2015).
[Crossref]

R. Peterson, D. Bliss, C. Lynch, and D. Tomich, “Progress in orientation-patterned GaAs for next-generation nonlinear optical devices,” Proc. SPIE 6875, 68750D (2008).
[Crossref]

Surf. Sci. (1)

I. Markov and A. Milchev, “The effect of anharmonicity in epitaxial interfaces: Equilibrium structure of thin epitaxial films,” Surf. Sci. 136(2-3), 519–531 (1984).
[Crossref]

Other (7)

A. Zangwill, Physics at Surfaces (Cambridge University Press, 1988).

V. Tassev and R. Peterson, Non-provisional patent “Heteroepitaxial Growth of Orientation-Patterned Materials on Orientation-Patterned Foreign Substrates,” filed with the U.S. Patent and Trademark Office on Nov 06, 14934636 (2015).

V. Tassev and R. Peterson, Provisional patent “Heteroepitaxial Growth of Thick Orientation-Patterned GaP on Orientation-Patterned GaAs,” filed with the U.S. Patent and Trademark Office on June 23, 62076520 (2015).

V. Tassev and R. Peterson, Provisional patent “Heteroepitaxial Growth of Thick Orientation-Patterned GaP on Orientation-Patterned GaAs,” filed with the U.S. Patent and Trademark Office on Nov. 07, 62183208 (2014).

K. Thyagarajan, and A. Ghatak, Lasers: Fundamentals and Applications (Springer, 2011).

I. Markov, Crystal Growth for Beginners (World Scientific, 2008).

S. R. Vangala, V. Tassev, M. Kimani, M. Snure, and R. Peterson, “Development of Thick Orientation Patterned GaP for Frequency Conversion in the Mid IR and THz Region,” Proc. IRMMW-THz M5, 12.3 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 2PA of GaP (red dot-our measurement) compared to the 2PA of GaAs [7] (a); signal and idler wavelengths as a function of QPM period Λ for GaP and GaAs at a pump wavelength of 1.064 µm [8, 9] (b).
Fig. 2
Fig. 2 Nomarski microscopy images (assembled by stitching software) of the top HVPE GaP surfaces grown on unpatterned “on-axis” (100) GaP (a) and GaAs (b) quarters of 2-inch wafers. The thicknesses of the two layers are slightly different but both are about 200 µm thick.
Fig. 3
Fig. 3 Cross section of HVPE grown GaP on a GaAs substrate revealed smooth surface morphology and uniform thickness (a); Elemental profile plot across the interface, performed by EDS, indicates mutual diffusion of As (within the growing layer) and P (within the substrate) near the interface (b).
Fig. 4
Fig. 4 IR transmittance spectra in the range 500-3300 nm of three GaP samples, one semi-insulating (SI), one commercial substrate (before growth) and one HVPE grown layer. The black lines denote the transmission with the reflection losses, while the red ones denote the corrected transmission. The GaP and SI GaP were 350 µm thick, the HVPE GaP was 370 µm thick.
Fig. 5
Fig. 5 IR transmittance spectra of a 350 µm thick GaAs substrate (green line), a 105-µm thick GaP HVPE grown layer on a commercial 350 µm thick GaP substrate (red line) and a 117 µm thick GaP HVPE grown layer on a 350 µm thick GaAs substrate (blue line) (a); Measurements of the 2PA at 1064 nm in 370 µm thick HVPE grown GaP (b).
Fig. 6
Fig. 6 Voids resulting from poor wafer parallelism when bonding GaP wafers (a); voids are rarely present when bonding GaAs wafers (b).
Fig. 7
Fig. 7 A 3D-reconstruction, using microscopic images, represents the top surface (1 image) and the cross section (3 images in a row) along the whole sample length of an about 260 µm thick OPGaP layer heteroepitaxially grown on a 500 µm thick OPGaAs MBE assisted template with a pattern period of 110 µm. Each red arrow couple shows where the left image should be stitched to the next at right. The domain fidelity is excellent along the whole sample length.
Fig. 8
Fig. 8 Typical cross sections images of OPGaP grown by HVPE on MBE assisted polarity inversion OPGaAs templates after 2-3 hours of growth (a) and after 6-8 hours of growth (b); and OPGaP grown by HVPE on a wafer bonded OPGaAs template (c).

Tables (2)

Tables Icon

Table 1 A comparison of price and quality (EPD/cm2) of commercial 2-inch GaP and GaAs.

Tables Icon

Table 2 A comparison of the FWHM (XRD omega-scan) of GaP and GaAs wafers before and after the HVPE growth.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 Λ = n p λ p n s λ s n i λ i
G a C l + P H 3 G a P + H C l

Metrics