Abstract

Double silicates with the silico-carnotite orthorhombic structure and co-doped with Tb3+ and Eu3+ have been prepared by solid-state reaction. Room temperature luminescence spectra and decay kinetics have been measured and analysed. Upon UV excitation at 378 nm, the emission colour varies from red to pinkish, depending on the doping level. The resulting colour can be adjusted by controlling the Tb3+/Eu3+ concentration ratio. Control of the doping leads to close-to-white emission in some of the analysed samples upon excitation in the wavelength region useful for LED lighting.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoluminescence properties of Tm3+/Tb3+/Eu3+ tri-doped phosphate glass and glass ceramics for white-light-emitting diodes

Yin Yu, Feng Song, Chengguo Ming, Jun Zhang, and Fengxiao Wang
Appl. Opt. 52(23) 5606-5610 (2013)

The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications

Yanlin Huang, Yosuke Nakai, Taiju Tsuboi, and Hyo Jin Seo
Opt. Express 19(7) 6303-6311 (2011)

Energy transfer and thermal stability in Bi3+/Eu3+ co-doped germanium-borate glasses for organic-resin-free UV LEDs

X. Y. Liu, H. Guo, S. X. Dai, M. Y. Peng, and Q. Y. Zhang
Opt. Mater. Express 6(11) 3574-3585 (2016)

References

  • View by:
  • |
  • |
  • |

  1. European Commission, Green Paper Lighting the Future: Accelerating the deployment of innovative lighting technologies (2011).
  2. C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [Crossref] [PubMed]
  3. P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
    [Crossref]
  4. H. Guo, H. Zhang, J. Li, and F. Li, “Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light,” Opt. Express 18(26), 27257–27262 (2010).
    [Crossref] [PubMed]
  5. Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
    [Crossref] [PubMed]
  6. Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
    [Crossref]
  7. F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
    [Crossref]
  8. F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
    [Crossref]
  9. I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
    [Crossref]
  10. B. Dickens and W. E. Brown, “Crystal Structure of Ca3(PO4)2SiO4 (Silico-Carnotite),” Tschermaks Mineral. Petrogr. Mitt. 16(1-2), 1–27 (1971).
    [Crossref]
  11. G. A. Novak and G. V. Gibbs, “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791–825 (1971).
  12. F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
    [Crossref]
  13. F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
    [Crossref]
  14. J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
    [Crossref]
  15. Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
    [Crossref]
  16. F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
    [Crossref]
  17. M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
    [Crossref]
  18. T. Hoshina, “Radiative transition probabilities in Tb3+ and fluorescence colors producible by Tb3+-activated phosphors,” Jpn. J. Appl. Phys. 6(10), 1203–1211 (1967).
    [Crossref]

2016 (2)

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
[Crossref]

2015 (2)

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

2013 (2)

F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
[Crossref]

F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
[Crossref]

2012 (2)

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

2011 (2)

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

1981 (1)

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

1971 (2)

B. Dickens and W. E. Brown, “Crystal Structure of Ca3(PO4)2SiO4 (Silico-Carnotite),” Tschermaks Mineral. Petrogr. Mitt. 16(1-2), 1–27 (1971).
[Crossref]

G. A. Novak and G. V. Gibbs, “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791–825 (1971).

1967 (1)

T. Hoshina, “Radiative transition probabilities in Tb3+ and fluorescence colors producible by Tb3+-activated phosphors,” Jpn. J. Appl. Phys. 6(10), 1203–1211 (1967).
[Crossref]

Astrath, N. G. C.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Auzel, F.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Baesso, M. L.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Bartosiewicz, K.

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

Bettinelli, M.

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
[Crossref]

F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
[Crossref]

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Bovo, L.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Brown, W. E.

B. Dickens and W. E. Brown, “Crystal Structure of Ca3(PO4)2SiO4 (Silico-Carnotite),” Tschermaks Mineral. Petrogr. Mitt. 16(1-2), 1–27 (1971).
[Crossref]

Carrasco, I.

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

Catunda, T.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Dadoun, G.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Dexpert-Ghys, J.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Dickens, B.

B. Dickens and W. E. Brown, “Crystal Structure of Ca3(PO4)2SiO4 (Silico-Carnotite),” Tschermaks Mineral. Petrogr. Mitt. 16(1-2), 1–27 (1971).
[Crossref]

dos Santos, J. F. M.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Gedam, R. S.

P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
[Crossref]

Gibbs, G. V.

G. A. Novak and G. V. Gibbs, “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791–825 (1971).

Guimaraes, F. B.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Guo, H.

Hao, Z.

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

Hoshina, T.

T. Hoshina, “Radiative transition probabilities in Tb3+ and fluorescence colors producible by Tb3+-activated phosphors,” Jpn. J. Appl. Phys. 6(10), 1203–1211 (1967).
[Crossref]

Jiang, H.

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

Jiang, J.

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

Lausi, A.

F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

Li, F.

Li, J.

Lin, C. C.

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Liu, R.-S.

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

Lu, S.

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

Makram, H.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Mariotto, G.

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Morin, D.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Munishwar, S. R.

P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
[Crossref]

Nikl, M.

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

Novak, G. A.

G. A. Novak and G. V. Gibbs, “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791–825 (1971).

Nunes, L. A. O.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Ostorero, J.

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Pawar, P. P.

P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
[Crossref]

Piccinelli, F.

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
[Crossref]

F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
[Crossref]

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Shang, J.

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

Speghini, A.

F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
[Crossref]

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

Tanabe, S.

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

Terra, I. A. A.

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

Ueda, J.

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

Wang, X.

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

Wang, Z.

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

Zhang, C.

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

Zhang, H.

Zhang, J.

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

Zhang, X.

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

Alloys and Comp. (1)

P. P. Pawar, S. R. Munishwar, and R. S. Gedam, “Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED,” Alloys and Comp. 660, 347–355 (2016).
[Crossref]

Am. Mineral. (1)

G. A. Novak and G. V. Gibbs, “The crystal chemistry of the silicate garnets,” Am. Mineral. 56, 791–825 (1971).

Chem. Commun. (Camb.) (1)

Y. Liu, X. Zhang, Z. Hao, X. Wang, and J. Zhang, “Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer,” Chem. Commun. (Camb.) 47(38), 10677–10679 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. F. M. dos Santos, I. A. A. Terra, N. G. C. Astrath, F. B. Guimaraes, M. L. Baesso, L. A. O. Nunes, and T. Catunda, “Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses,” J. Appl. Phys. 117(5), 053102 (2015).
[Crossref]

J. Electr. Soc. (1)

Z. Hao, J. Shang, X. Zhang, S. Lu, and Z. Wang, “Blue-green-emitting phosphors CaSc2O4:Tb3+: Tunable luminescence manipulated by cross-relaxation,” J. Electr. Soc. 156(3), H193–H196 (2009).
[Crossref]

J. Lumin. (1)

M. Bettinelli, F. Piccinelli, A. Speghini, J. Ueda, and S. Tanabe, “Excited state dynamics and energy transfer rates in Sr3Tb0.90Eu0.10(PO4)3,” J. Lumin. 132(1), 27–29 (2012).
[Crossref]

J. Phys. Chem. C (1)

Y. Liu, J. Zhang, C. Zhang, J. Jiang, and H. Jiang, “High Efficiency Green Phosphor Ba9Lu2Si6O24:Tb3+: Visible Quantum Cutting via Cross-Relaxation Energy Transfers,” J. Phys. Chem. C 120(4), 2362–2370 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

C. C. Lin and R.-S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

J. Rare Earths (1)

F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12,” J. Rare Earths 27(4), 555–559 (2009).
[Crossref]

J. Solid State Chem. (2)

F. Piccinelli, A. Lausi, and M. Bettinelli, “Structural investigation of the new Ca3Ln2Ge3O12 (Ln=Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy of Ca3Gd2Ge3O12 doped with the Eu3+ ion,” J. Solid State Chem. 205, 190–196 (2013).
[Crossref]

F. Piccinelli, A. Lausi, A. Speghini, and M. Bettinelli, “Crystal structure study of new lanthanide silicates with silico-carnotite structure,” J. Solid State Chem. 194, 233–237 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Hoshina, “Radiative transition probabilities in Tb3+ and fluorescence colors producible by Tb3+-activated phosphors,” Jpn. J. Appl. Phys. 6(10), 1203–1211 (1967).
[Crossref]

Mater. Res. Bull. (1)

F. Auzel, J. Dexpert-Ghys, D. Morin, G. Dadoun, J. Ostorero, and H. Makram, “Strong self-quenching of Tb3+ in two stoichiometric materials: Ultraphosphate and chloroapatite,” Mater. Res. Bull. 16(12), 1521–1525 (1981).
[Crossref]

Opt. Express (1)

Opt. Mater. (2)

F. Piccinelli, A. Speghini, and M. Bettinelli, “Crystal structure and optical spectroscopy of Ca3Ln2Si3O12 (Ln= Gd and Lu) doped with Eu3+,” Opt. Mater. 35(11), 2027–2029 (2013).
[Crossref]

I. Carrasco, K. Bartosiewicz, M. Nikl, F. Piccinelli, and M. Bettinelli, “Energy transfer processes in Ca3Tb2-xEuxSi3O12(x= 0–2),” Opt. Mater. 48, 252–257 (2015).
[Crossref]

Tschermaks Mineral. Petrogr. Mitt. (1)

B. Dickens and W. E. Brown, “Crystal Structure of Ca3(PO4)2SiO4 (Silico-Carnotite),” Tschermaks Mineral. Petrogr. Mitt. 16(1-2), 1–27 (1971).
[Crossref]

Other (1)

European Commission, Green Paper Lighting the Future: Accelerating the deployment of innovative lighting technologies (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Room temperature emission spectra of Ca3Gd1.98Tb0.02Si3O12exc = 377 nm) and Ca3Gd1.98Eu0.02Si3O12exc = 393 nm). The spectra are normalized to Tb3+ 5D47F5 emission, and Eu3+ 5D07F2 emission respectively. (b) Room temperature emission spectra of Ca3Gd2-x-yTbxEuySi3O12 measured upon excitation at 378 nm. All spectra are normalized to Tb3+ 5D37F5 emission.
Fig. 2
Fig. 2 CIE diagram coordinates of Ca3Gd1.98Tb0.02Si3O12, Ca3Gd1.98Tb0.02Si3O12 and Ca3Gd2-x-yTbxEuySi3O12 excited at 377, 378 and 393 nm respectively.
Fig. 3
Fig. 3 (a) Room temperature excitation spectra of Ca3Gd1.98Tb0.02Si3O12emi = 542 nm), Ca3Gd1.98Eu0.02Si3O12emi = 612 nm) and Ca3Gd2-x-yTbxEuySi3O12 monitoring both emission of Tb3+ and Eu3+emi = 542 nm, and λemi = 611 nm). The spectra are normalized to Tb3+ 7F65D3 band, and Eu3+ 7F05D3 band respectively.
Fig. 4
Fig. 4 (a) Room temperature decay curves of the 5D4 Tb3+ emission excited at 377 nm (Ca3Tb2Si3O12) and at 378 nm (Ca3Gd2-x-yTbxEuySi3O12). (b) Room temperature decay curves of the 5D0 Eu3+ emission excited at 378 nm (Ca3Gd2-x-yTbxEuySi3O12) and 393 nm (Ca3Eu2Si3O12).
Fig. 5
Fig. 5 (a) Room temperature emission spectra of Ca3Y1.98Tb0.02Si3O12exc = 377 nm) and Ca3Y1.98Eu0.02Si3O12exc = 393 nm). The spectra are normalized to Tb3+ 5D47F5 emission, and Eu3+ 5D07F2 emission respectively. (b) Room temperature emission spectra of Ca3Y2-x-yTbxEuySi3O12 measured upon excitation at 378 nm. All spectra are normalized to Tb3+ 5D37F5 emission.
Fig. 6
Fig. 6 CIE diagram coordinates of Ca3Y1.98Tb0.02Si3O12, Ca3Y1.98Tb0.02Si3O12 and Ca3Y2-x-yTbxEuySi3O12 excited at 377, 378 and 393 nm respectively.

Tables (5)

Tables Icon

Table 1 Calculated values for CIE coordinates of Ca3Gd1.98Tb0.02Si3O12 and Ca3Gd2-x-yTbxEuySi3O12 excited at 378 nm and Ca3Gd1.98Eu0.02Si3O12 excited at 393 nm.

Tables Icon

Table 2 Decay data for the luminescent levels of Tb3+ and Eu3+ in several oxide hosts upon UV excitation

Tables Icon

Table 3 Calculated values for B/G and O/R ratios for the Ca3A1.98Tb0.02Si3O12 (A = Gd, Y), Ca3A1.98Eu0.02Si3O12 (A = Gd, Y) phosphors.

Tables Icon

Table 4 Calculated values for CIE coordinates of Ca3Y1.98Tb0.02Si3O12 and Ca3Y2-x-yTbxEuySi3O12 excited at 378 nm and Ca3Y1.98Eu0.02Si3O12 excited at 393 nm.

Tables Icon

Table 5 Decay data for the luminescent levels of Tb3+ and Eu3+ in several yttrium hosts upon UV excitation.

Metrics