Abstract

We studied operation characteristics of an Yb:YAG channel waveguide laser, Q-switched by employing monolayer graphene. Uniform monolayer graphene grown by thermal chemical vapor deposition is transferred directly onto one end facet of the channel waveguide which simultaneously serves as an output coupling mirror (OC), making a monolithic Q-switched waveguide laser possible. In this cavity configuration, the Q-switched laser delivers a maximum average output power of 85 mW, corresponding to a pulse energy of 64 nJ at 1.33-MHz repetition rate. The laser performance of this device is compared with another cavity configuration, in which the monolayer graphene is coated onto separate OCs. In this case a shorter pulse duration of 79 ns is achieved, but the laser operation performance is worse with respect to efficiency and output power. The proposed monolithic approach demonstrates the potential for developing more compact Q-switched laser devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes

Sun Young Choi, Thomas Calmano, Mi Hye Kim, Dong-Il Yeom, Christian Kränkel, Günter Huber, and Fabian Rotermund
Opt. Express 23(6) 7999-8005 (2015)

Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide

Yang Tan, Shavkat Akhmadaliev, Shengqiang Zhou, Shangqian Sun, and Feng Chen
Opt. Express 22(3) 3572-3577 (2014)

Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene

Yang Tan, Chen Cheng, Shavkat Akhmadaliev, Shengqiang Zhou, and Feng Chen
Opt. Express 22(8) 9101-9106 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
    [Crossref] [PubMed]
  2. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
    [Crossref]
  3. J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
    [Crossref]
  4. A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
    [Crossref]
  5. A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
    [Crossref] [PubMed]
  6. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  8. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Mater. 6, 611–622 (2010).
  9. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  10. I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Microchip laser-induced breakdown spectroscopy: A preliminary feasibility investigation,” Appl. Spectrosc. 58(7), 762–769 (2004).
    [Crossref] [PubMed]
  11. M. P. Moreno and S. S. Vianna, “Femtosecond 1 GHz Ti:sapphire laser as a tool for coherent spectroscopy in atomic vapor,” J. Opt. Soc. Am. B 28(9), 2066–2069 (2011).
    [Crossref]
  12. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  13. J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
    [Crossref] [PubMed]
  14. S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
    [Crossref] [PubMed]
  15. A. Choudhary, S. Dhingra, B. DUrso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
    [Crossref] [PubMed]
  16. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
    [Crossref] [PubMed]
  17. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
    [Crossref] [PubMed]
  18. Y. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
    [Crossref] [PubMed]
  19. Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
    [Crossref]
  20. Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).
  21. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  22. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [Crossref]
  23. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
    [Crossref] [PubMed]
  24. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 401 (2015).
    [Crossref]
  25. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref] [PubMed]
  26. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  27. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  28. S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
    [Crossref] [PubMed]
  29. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  30. J. A. Morris and C. R. Pollock, “Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15(8), 440–442 (1990).
    [Crossref] [PubMed]
  31. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]

2015 (6)

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 401 (2015).
[Crossref]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref] [PubMed]

S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
[Crossref] [PubMed]

A. Choudhary, S. Dhingra, B. DUrso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
[Crossref] [PubMed]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

2013 (3)

2012 (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (5)

2009 (2)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

2004 (1)

1997 (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1990 (1)

Aguiló, M.

Ahn, K. J.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

Akhmadaliev, S.

Amponsah-Manager, K.

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Aravazhi, S.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

Bae, S.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
[Crossref] [PubMed]

Baek, I. H.

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Beecher, S. J.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Mater. 6, 611–622 (2010).

Brown, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Calmano, T.

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chen, F.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref] [PubMed]

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Cheng, C.

Cho, W. B.

Choi, S. Y.

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
[Crossref] [PubMed]

Choudhary, A.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

A. Choudhary, S. Dhingra, B. DUrso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
[Crossref] [PubMed]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

D’Urso, B.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

Demetriou, G.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Dhingra, S.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

A. Choudhary, S. Dhingra, B. DUrso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
[Crossref] [PubMed]

Díaz, F.

Diddams, S. A.

DUrso, B.

Eason, R. W.

Ferrari, A. C.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Mater. 6, 611–622 (2010).

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Gornushkin, I. B.

Griebner, U.

Hasan, T.

He, R.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Hong, B. H.

Huber, G.

Jaque, D.

Jeong, H.

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Jia, Y.

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kannan, P.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

Kar, A. K.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Kim, J. W.

Kim, K.

Kim, M. H.

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kränkel, C.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, H. W.

Li, X.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Lidorikis, E.

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, Q.

Macdonald, J.

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

Mary, R.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

Mateos, X.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Milana, S.

Moreno, M. P.

Morris, J. A.

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 401 (2015).
[Crossref]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Obraztsov, P. A.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

Ohara, S.

Okhrimchuk, A. G.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

Omenetto, N.

Parsonage, T. L.

Paschke, A.-G.

Petermann, K.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Petrov, V.

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Pollnau, M.

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

Pollock, C. R.

Popa, D.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

Ren, Y.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

Rodenas, A.

Rotermund, F.

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
[Crossref] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shepherd, D. P.

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

A. Choudhary, S. Dhingra, B. DUrso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, “Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber,” Opt. Lett. 39(15), 4325–4328 (2014).
[Crossref] [PubMed]

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Sloyan, K. A.

Smith, B. W.

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Sun, S.

Sun, Z.

Tan, Y.

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Thomson, R. R.

Torrisi, F.

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Vázquez de Aldana, J. R.

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Vianna, S. S.

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Winefordner, J. D.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yeom, D.-I.

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
[Crossref] [PubMed]

J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013).
[Crossref] [PubMed]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011).
[Crossref] [PubMed]

Zhang, H.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhou, S.

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

AIP Adv. (1)

J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5(1), 017110 (2015).
[Crossref]

Appl. Phys. B (1)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105(10), 101111 (2014).
[Crossref]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 401 (2015).
[Crossref]

Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8 GHz graphene-based 2 μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1602106 (2015).

IEEE Photonics Technol. Lett. (1)

A. Choudhary, S. Dhingra, B. D’Urso, P. Kannan, and D. P. Shepherd, “Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers,” IEEE Photonics Technol. Lett. 27(6), 646–649 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Laser Phys. Lett. (1)

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Nat. Mater. (2)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Mater. 6, 611–622 (2010).

Opt. Express (8)

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, and F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014).
[Crossref] [PubMed]

Y. Jia, Y. Tan, C. Cheng, J. R. Vázquez de Aldana, and F. Chen, “Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation,” Opt. Express 22(11), 12900–12908 (2014).
[Crossref] [PubMed]

S. Y. Choi, J. W. Kim, M. H. Kim, D.-I. Yeom, B. H. Hong, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, U. Griebner, and F. Rotermund, “Carbon nanostructure-based saturable absorber mirror for a diode-pumped 500-MHz femtosecond Yb:KLu(WO4)2 laser,” Opt. Express 22(13), 15626–15631 (2014).
[Crossref] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013).
[Crossref] [PubMed]

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription,” Opt. Express 21(21), 25501–25508 (2013).
[Crossref] [PubMed]

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5, 11172 (2015).
[Crossref] [PubMed]

Science (1)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of monolayer graphene SAs for Setup I (left) and Setup II (right). (b) Cross-sectional images of the fs-laser-inscribed two tracks separated by 16 μm serving as the channel waveguide. (c) Raman spectrum measured for the synthesized monolayer graphene, showing the 2D peak well-matched by a single Lorentzian curve (inset). (d) Measured nonlinear transmission and pump-probe traces (inset) near 1.09 μm in monolayer graphene with fit curves (red lines).
Fig. 2
Fig. 2 Experimental setup of Yb:YAG waveguide lasers Q-switched by monolayer graphene on an end facet of the waveguide without external output coupler in Setup I (upper) and on an output coupler in Setup II (lower). L1: aspheric lens with f = 18.4 mm, IC: incoupling mirror, OC: output coupler with T = 10%, 20% or 30%, L2: convex lens with f = 11 mm.
Fig. 3
Fig. 3 Laser operation of Yb:YAG channel waveguide lasers in Setup I and Setup II: (a) CW output power, (b) Q-switched average output power (upper) and corresponding pulse energy characteristics (lower).
Fig. 4
Fig. 4 Performance of monolayer graphene Q-switched Yb:YAG channel waveguide lasers in Setup I and Setup II: (a) Repetition rate (black dots) and pulse duration (blue squares) characteristics vs. incident pump power, and (b) pulse traces measured at maximum average output powers.
Fig. 5
Fig. 5 (a) Laser spectra and beam profiles of monolayer graphene Q-switched Yb:YAG channel waveguide lasers in Setup I and Setup II measured at maximum average output powers and (b) corresponding pulse trains.

Metrics