Abstract

Strong electric field enhancement can be achieved in metal-insulator-metal (MIM) configuration where a thin dielectric layer is in between two metal layers. Here MIM nanostructures with intrinsic electromagnetic hot spots accessible for analytes are fabricated by oblique angle deposition (OAD). Firstly, silver nanoparticles are produced by OAD on a flat silver mirror with a thin dielectric over-layer. The broadband absorption peak of this particle-on-film system can be tuned by varying the particle size in order to fit a given excitation laser source for SERS (surface-enhanced Raman scattering). Then we deposit MIM nanoparticles on three-dimensionally structured silicon by an equivalent OAD method. By two-photon induced luminescence imaging and Raman measurements, we demonstrate strong and uniform field enhancement over the proposed substrate which is a good candidate for SERS application.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber sensor based on oblique angle deposition

Sasani Jayawardhana, Gorgi Kostovski, Alex P. Mazzolini, and Paul R. Stoddart
Appl. Opt. 50(2) 155-162 (2011)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy

Wei Wei, Na Chen, Jinpeng Nong, Guilian Lan, Wei Wang, Juemin Yi, and Linlong Tang
Opt. Express 26(13) 16903-16916 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
    [Crossref] [PubMed]
  2. H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem 4, 1001–1005 (2003).
    [Crossref] [PubMed]
  3. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
    [Crossref] [PubMed]
  4. P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
    [Crossref]
  5. D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
    [Crossref]
  6. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
    [Crossref] [PubMed]
  7. S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
    [Crossref]
  8. H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
    [Crossref]
  9. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
    [Crossref]
  10. A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
    [PubMed]
  11. Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
    [Crossref] [PubMed]
  12. S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
    [Crossref] [PubMed]
  13. M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
    [Crossref]
  14. Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
    [Crossref] [PubMed]
  15. M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy,” Acs Nano 5, 307–314 (2011).
    [Crossref]
  16. F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
    [Crossref] [PubMed]
  17. D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
    [Crossref] [PubMed]
  18. N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
    [Crossref]
  19. K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
    [Crossref] [PubMed]
  20. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
    [Crossref] [PubMed]
  21. J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
    [Crossref] [PubMed]
  22. S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
    [Crossref]
  23. J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
    [Crossref]
  24. I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10, 3499–3514 (2014).
    [Crossref] [PubMed]
  25. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
    [Crossref]
  26. J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
    [Crossref]
  27. Y. J. Jen, J. W. Huang, W. C. Liu, S. Chan, and C. H. Tseng, “Glancing angle deposited gold nanohelix arrays on smooth glass as three-dimensional SERS substrates,” Opt. Mater. Express 6, 697–704 (2016).
    [Crossref]
  28. L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
    [Crossref]
  29. G. Leveque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31, 2750–2752 (2006).
    [Crossref] [PubMed]
  30. G. Leveque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).
    [Crossref] [PubMed]
  31. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
    [PubMed]
  32. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
    [Crossref]
  33. G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
    [Crossref]
  34. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
    [Crossref] [PubMed]
  35. E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
    [Crossref]
  36. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
    [Crossref]
  37. J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  39. X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
    [Crossref]
  40. S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
    [Crossref]
  41. Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
    [Crossref] [PubMed]
  42. X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
    [Crossref]
  43. X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
    [Crossref]
  44. W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photo-voltaics,” Opt. Mater. Express 5, 1482 (2015).
    [Crossref]
  45. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
    [Crossref]
  46. T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
    [Crossref]
  47. M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
    [Crossref] [PubMed]
  48. H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
    [Crossref]
  49. C. L. Tan and Y. T. Lee, “High-efficiency light-trapping effect using silver nanoparticles on thin amorphous silicon subwavelength structure,” Opt. Lett. 38, 4943–4945 (2013).
    [Crossref] [PubMed]
  50. Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
    [Crossref]
  51. Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering,” Adv. Mater. 24, 2234–2237 (2012).
    [Crossref] [PubMed]
  52. M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
    [Crossref]
  53. N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
    [Crossref]
  54. S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
    [Crossref]
  55. Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
    [Crossref]
  56. S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
    [Crossref]
  57. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [Crossref]
  58. J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
    [Crossref] [PubMed]
  59. J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
    [Crossref]
  60. M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
    [Crossref] [PubMed]
  61. J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (4)

W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photo-voltaics,” Opt. Mater. Express 5, 1482 (2015).
[Crossref]

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

2014 (12)

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10, 3499–3514 (2014).
[Crossref] [PubMed]

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

2013 (9)

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

C. L. Tan and Y. T. Lee, “High-efficiency light-trapping effect using silver nanoparticles on thin amorphous silicon subwavelength structure,” Opt. Lett. 38, 4943–4945 (2013).
[Crossref] [PubMed]

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

2012 (6)

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering,” Adv. Mater. 24, 2234–2237 (2012).
[Crossref] [PubMed]

2011 (7)

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy,” Acs Nano 5, 307–314 (2011).
[Crossref]

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

2010 (2)

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

2009 (3)

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

2008 (3)

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

2007 (3)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[Crossref]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

2006 (4)

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[Crossref] [PubMed]

G. Leveque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31, 2750–2752 (2006).
[Crossref] [PubMed]

G. Leveque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

2005 (2)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

2004 (1)

G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
[Crossref]

2003 (2)

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem 4, 1001–1005 (2003).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

1997 (1)

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10, 3499–3514 (2014).
[Crossref] [PubMed]

Abelmann, L.

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[Crossref]

Ahn, K.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Aikio, S.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Ali, S. U.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Angelis, F. D.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Ao, X.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photo-voltaics,” Opt. Mater. Express 5, 1482 (2015).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Au, L.

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

Bae, Y.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Banaee, M. G.

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy,” Acs Nano 5, 307–314 (2011).
[Crossref]

Banholzer, M. J.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

Baumberg, J.

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

Baumberg, J. J.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Beechem, T.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Best, M. D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Blaber, M. G.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Blackie, E.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Bochenkov, V. E.

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Bratkovsky, A. M.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Brehm, G.

G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
[Crossref]

Brett, M. J.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[Crossref]

Brozik, S. M.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Burckel, D. B.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Butun, S.

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

Camargo, P. H. C.

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

Camden, J. P.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

Cao, B.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Cao, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Cao, Y.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Chan, S.

Chaney, S. B.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

Charlton, M. D.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Charlton, M. D. B.

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Charltona, M. D.

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

Chen, C.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Chen, R. Y.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Chen, Y.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Chettiar, U. K.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Chirumamilla, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Choi, M.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Chu, Y.

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

Cinel, N. A.

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

Cobley, C.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

Crozier, K. B.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy,” Acs Nano 5, 307–314 (2011).
[Crossref]

Cunningham, B. T.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Dang, K.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

Dantus, M.

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[Crossref] [PubMed]

Das, G.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Das, S. R.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

de Abajo, F. J. G.

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Devlin, E.

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Dluhy, R. A.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

Dorpe, P. V.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Dorpea, P. V.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Drachev, V. P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Driskell, J. D.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

Duyne, R. P. V.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Engheta, N.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Ertas, G.

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

Etchegoin, P. G.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Eustace, D.

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Eustace, D. A.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Ewald, M.

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[Crossref] [PubMed]

Fabrizio, E. D.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Fakhraai, Z.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Fang, J.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Fang, J. X.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Fang, Y.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Farrell, M. E.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Fei, M.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Frederiksen, M.

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

Freeman, R. G.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Gopalakrishnan, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Gu, C. Z.

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Gu, H.

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Gunn, J. M.

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[Crossref] [PubMed]

Ha, K.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Hahn, J.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Halas, N. J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hao, Q.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Hastings, S. P.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Hawkeye, M. M.

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[Crossref]

He, S.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Henry, A.-I.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Henzie, J.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Honkanen, S.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Hu, M.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Huang, J. W.

Huang, Q.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Huang, T. J.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Huang, W.

Huang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Hwang, J.-H.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

In, S.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Jaiswal, A.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Janes, D. B.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

Jans, H.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Jen, Y. J.

Jeon, H. C.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Jeon, K.-S.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Jeong, K.-H.

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering,” Adv. Mater. 24, 2234–2237 (2012).
[Crossref] [PubMed]

Jiang, J.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Jung, K.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Kall, M.

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem 4, 1001–1005 (2003).
[Crossref] [PubMed]

Kang, G.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Kang, H.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Kildishev, A. V.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Kim, A.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Kim, B. J.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Kim, D. S.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Kim, G.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

Kim, H.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Kim, H. J.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Kim, M. H.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

Kim, M. P.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Kim, S.-H.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Kiraly, B.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Kleinman, S. L.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Knez, M.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Koh, A. L.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Kondo, T.

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

Kontturi, V.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Krahne, R.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Kuttge, M.

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

Kwon, S.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Lagaea, L.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Lapsley, M. I.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Large, N.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Lassiter, J. B.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Lee, C. K.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

Lee, H.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Lee, J.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

Lee, J.-K.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Lee, S. Y.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Lee, Y. H.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

Lee, Y. T.

Lei, Y.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Leoncini, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Leveque, G.

Li, G. L.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Li, J.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Li, L.

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Li, W.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Li, X.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Li, Y.

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Li, Z.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Li, Z. Y.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

Liang, H.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Liberale, C.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Lin, J.

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

Ling, X. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

Link, S.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Lipsanen, H.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Liu, K.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Liu, W. C.

Liu, Y.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

Liu, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Lodder, C.

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[Crossref]

Manjavacas, A.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Martin, O. J. F.

Masuda, H.

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Meng, G.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Meyer, M.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Millstone, J. E.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

Mirkin, C. A.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

Miyazaki, H.

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

Montao, G. A.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Moshchalkov, V. V.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Mueller, F.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Mulvihill, M. J.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

Nam, J.-M.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Natan, M. J.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Naumov, I.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Netti, M. C.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Nettib, C. M.

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

Nishio, K.

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

Nogan, J.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Nordlander, P.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Nyga, P.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Ogaki, R.

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

Oh, Y.-J.

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering,” Adv. Mater. 24, 2234–2237 (2012).
[Crossref] [PubMed]

Okumura, Y.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Oo, S. Z.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Ou, F. S.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Ozbay, E.

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

Pale, V.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Papaefthymiou, G. C.

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Park, N.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Park, S.-J.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Pearce, S. J.

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Pellegrino, P. M.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Peng, B.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Perney, N. M. B.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Perneyc, N.

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

Phang, I. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

Pikhitsa, P. V.

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

Pollard, M. E.

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Polman, A.

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

Polsky, R.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Prokopeva, L. J.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Qian, J.

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

Qian, Z.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Qin, L.

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

Quan, B.

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Rondanina, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Ru, E. C. L.

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

Rycenga, M.

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

Sauer, G.

G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
[Crossref]

Schatz, G. C.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Schmidt, V.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Schneider, S.

G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
[Crossref]

Scott, J.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Shah, A.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Shalaev, V. M.

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Shanmukh, S.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

Shao, H.

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Sharma, B.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Siitonen, S.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Sinclair, R.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Singamaneni, S.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Sobhani, H.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Suh, Y. D.

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Sun, Z.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Sutherland, D. S.

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

Swanglap, P.

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

Tadepalli, S.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

Tan, C. L.

Tang, A.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Tang, H.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Tang, X. J.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

Thoreson, M. D.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Tian, L.

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

Tian, Y.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Tittonen, I.

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Toma, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Tong, X.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Tseng, C. H.

Tuominen, J.

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

Valley, N.

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

Verellen, N.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Vos, I.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Wang, D.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

Wang, J.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Wang, L.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Wang, S. X.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Wang, W.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Wang, X.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photo-voltaics,” Opt. Mater. Express 5, 1482 (2015).
[Crossref]

Washburn, C. M.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Wen, F.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Wheeler, D. R.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Williams, R. S.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Wu, H.-Y.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Wu, W.

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

Wu, Y.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Xia, Y.

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

Xiao, X.

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Xiong, Q.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Xu, H.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Xu, H. X.

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem 4, 1001–1005 (2003).
[Crossref] [PubMed]

Xu, X.

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

Xue, Y.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

W. Huang, Y. Xue, X. Wang, and X. Ao, “Black silicon film with modulated macropores for thin-silicon photo-voltaics,” Opt. Mater. Express 5, 1482 (2015).
[Crossref]

Yang, P. D.

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

Yang, S.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Yang, S.-M.

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Yang, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Ye, J.

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

Yin, G.

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

Ying, J. Y.

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

You, H.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

You, M.-H.

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

Zhang, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

Zhang, L.

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Zhang, M.

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

Zhang, Y.

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

Zhang, Z.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Zhao, C.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Zhao, Y.

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

Zhao, Y. P.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

Zhu, C.

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Zhu, W.

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

Zoorob, M. E.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

Zoorobb, M.

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

ACS Nano (2)

S. P. Hastings, P. Swanglap, Z. Qian, Y. Fang, S.-J. Park, S. Link, N. Engheta, and Z. Fakhraai, “Quadrupole-enhanced raman scattering,” ACS Nano 8, 9025–9034 (2014).
[Crossref] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced raman spectroscopy,” Acs Nano 5, 307–314 (2011).
[Crossref]

M. Zhang, N. Large, A. L. Koh, Y. Cao, A. Manjavacas, R. Sinclair, P. Nordlander, and S. X. Wang, “High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps,” ACS Nano 9, 9331–9339 (2015).
[Crossref] [PubMed]

ACS Photon. (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic Films Can Easily Be Better: Rules and Recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Adv. Funct. Mater. (2)

S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, “Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition,” Adv. Funct. Mater. 23, 720–730 (2013).
[Crossref]

H. Tang, G. Meng, Q. Huang, Z. Zhang, Z. Huang, and C. Zhu, “Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3d surface-enhanced raman scattering substrates for rapid detection of trace polychlorinated biphenyls,” Adv. Funct. Mater. 22, 218–224 (2012).
[Crossref]

Adv. Mater. (7)

J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20, 4403–4407 (2008).
[Crossref]

Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced raman scattering,” Adv. Mater. 24, 2234–2237 (2012).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Y. Li, and J. X. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26, 2431–2439 (2014).
[Crossref] [PubMed]

D. Wang, W. Zhu, Y. Chu, and K. B. Crozier, “High directivity optical antenna substrates for surface enhanced raman scattering,” Adv. Mater. 24, 4376–4380 (2012).
[Crossref] [PubMed]

K. Jung, J. Hahn, S. In, Y. Bae, H. Lee, P. V. Pikhitsa, K. Ahn, K. Ha, J.-K. Lee, N. Park, and M. Choi, “Hotspot-engineered 3d multipetal flower assemblies for surface-enhanced raman spectroscopy,” Adv. Mater. 26, 5924–5929 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. D. Angelis, and E. D. Fabrizio, “3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26, 2353–2358 (2014).
[Crossref] [PubMed]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering,” Adv. Mater. 21, 4614–4618 (2009).
[Crossref]

Adv. Mater. Interfaces (1)

Y. Chen, G. Kang, A. Shah, V. Pale, Y. Tian, Z. Sun, I. Tittonen, S. Honkanen, and H. Lipsanen, “Improved SERS intensity from silver-coated black silicon by tuning surface plasmons,” Adv. Mater. Interfaces 1, 1300008 (2014).
[Crossref]

Angew. Chem. Int. Ed. (1)

P. H. C. Camargo, M. Rycenga, L. Au, and Y. Xia, “Isolating and probing the hot spot formed between two silver nanocubes,” Angew. Chem. Int. Ed. 48, 2180–2184 (2009).
[Crossref]

Appl. Phys. Lett. (2)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y. P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[Crossref]

X. Ao, X. Tong, D. S. Kim, L. Zhang, M. Knez, F. Mueller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101, 111901 (2012).
[Crossref]

Chem. Commun. (1)

X. Xiao, J. Nogan, T. Beechem, G. A. Montao, C. M. Washburn, J. Wang, S. M. Brozik, D. R. Wheeler, D. B. Burckel, and R. Polsky, “Lithographically-defined 3d porous networks as active substrates for surface enhanced raman scattering,” Chem. Commun. 47, 9858–9860 (2011).
[Crossref]

Chem. Mater. (1)

S. Y. Lee, S.-H. Kim, M. P. Kim, H. C. Jeon, H. Kang, H. J. Kim, B. J. Kim, and S.-M. Yang, “Freestanding and arrayed nanoporous microcylinders for highly active 3d SERS substrate,” Chem. Mater. 25, 2421–2426 (2013).
[Crossref]

Chem. Soc. Rev. (1)

M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced raman spectroscopy,” Chem. Soc. Rev. 37, 885–897 (2008).
[Crossref] [PubMed]

ChemPhysChem (1)

H. X. Xu and M. Kall, “Polarization-dependent surface-enhanced raman spectroscopy of isolated silver nanoaggregates,” ChemPhysChem 4, 1001–1005 (2003).
[Crossref] [PubMed]

ECS Trans. (1)

M. D. Charltona, C. M. Nettib, M. Zoorobb, N. Perneyc, and J. Baumberg, “Organising light on the nano-scale: Surface plasmon engineering for repeatable SERS sensing and applications for rrace analyte detection,” ECS Trans. 3, 79–89 (2006).
[Crossref]

J. Am. Chem. Soc. (2)

M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. D. Yang, “Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS,” J. Am. Chem. Soc. 132, 268–274 (2010).
[Crossref]

S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz, and R. P. V. Duyne, “Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy,” J. Am. Chem. Soc. 135, 301–308 (2013).
[Crossref]

J. Nanophoton. (2)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophoton. 5, 051513 (2011).
[Crossref]

Z. Xu, H.-Y. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Li, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[Crossref]

J. Photochem. Photobiol., A (1)

T. Kondo, H. Miyazaki, K. Nishio, and H. Masuda, “Surface-enhanced raman scattering on multilayered nanodot arrays obtained using anodic porous alumina mask,” J. Photochem. Photobiol., A 221, 199–203 (2011).
[Crossref]

J. Phys. Chem. A (1)

M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. Y. Li, and Y. Xia, “Surface-enhanced raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver,” J. Phys. Chem. A 113, 3932–3939 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced raman scattering enhancement factors: A comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007).
[Crossref]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[Crossref]

J. Raman Spectrosc. (1)

G. Sauer, G. Brehm, and S. Schneider, “Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with nir excitation,” J. Raman Spectrosc. 35, 568–576 (2004).
[Crossref]

J. Vac. Sci. Technol. A (1)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[Crossref]

Laser Photonics Rev. (1)

J. Lin, Y. Zhang, J. Qian, and S. He, “A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced raman scattering and localized surface plasmon resonance,” Laser Photonics Rev. 8, 610–616 (2014).
[Crossref]

Nano Lett. (7)

J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
[Crossref] [PubMed]

F. S. Ou, M. Hu, I. Naumov, A. Kim, W. Wu, A. M. Bratkovsky, X. Li, R. S. Williams, and Z. Li, “Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced raman spectroscopy,” Nano Lett. 11, 2538–2542 (2011).
[Crossref] [PubMed]

M. Kuttge, F. J. G. de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10, 1537–1541 (2010).
[Crossref]

M. Frederiksen, V. E. Bochenkov, R. Ogaki, and D. S. Sutherland, “Onset of bonding plasmon hybridization preceded by gap modes in dielectric splitting of metal disks,” Nano Lett. 13, 6033–6039 (2013).
[Crossref] [PubMed]

J. M. Gunn, M. Ewald, and M. Dantus, “Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding,” Nano Lett. 6, 2804–2809 (2006).
[Crossref] [PubMed]

J.-H. Lee, M.-H. You, G.-H. Kim, and J.-M. Nam, “Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced raman scattering probes,” Nano Lett. 14, 6217–6225 (2014).
[Crossref] [PubMed]

Nanoscale (1)

J. Li, C. Chen, H. Jans, X. Xu, N. Verellen, I. Vos, Y. Okumura, V. V. Moshchalkov, L. Lagaea, and P. V. Dorpea, “300 mm wafer-level, ultra-dense arrays of Au-capped nanopillars with sub-10 nm gaps as reliable SERS substrates,” Nanoscale 6, 12391–12396 (2014).
[Crossref] [PubMed]

Nat. Nanotech. (1)

D. K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J.-M. Nam, “Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotech. 6, 452–460 (2011).
[Crossref]

Opt. Express (2)

S. Z. Oo, R. Y. Chen, S. Siitonen, V. Kontturi, D. A. Eustace, J. Tuominen, S. Aikio, and M. D. Charlton, “Disposable plasmonic plastic SERS sensor,” Opt. Express 21, 8484–18491 (2013).
[Crossref]

G. Leveque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. B (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced raman scattering,” Phys. Rev. B 76, 035426 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Proc. SPIE (2)

J. Fang, S. R. Das, L. J. Prokopeva, V. M. Shalaev, D. B. Janes, and A. V. Kildishev, “Time-domain modeling of silver nanowires-graphene transparent conducting electrodes,” Proc. SPIE 8806, 880601 (2013).

S. Z. Oo, M. D. B. Charlton, D. Eustace, R. Y. Chen, S. J. Pearce, and M. E. Pollard, “Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry,” Proc. SPIE 8234, 823406 (2012).
[Crossref]

Sci. Rep. (1)

D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Wafer-scale metasurface for total power absorption, local field enhancement and single molecule raman spectroscopy,” Sci. Rep. 3, 2867 (2013).
[PubMed]

Small (6)

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10, 3499–3514 (2014).
[Crossref] [PubMed]

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3d SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10, 2703–2711 (2014).
[Crossref] [PubMed]

X. Ao, X. Wang, G. Yin, K. Dang, Y. Xue, and S. He, “Broadband metallic absorber on a non-planar substrate,” Small 11, 1526 (2015).
[Crossref]

A. Jaiswal, L. Tian, S. Tadepalli, K. Liu, M. Fei, M. E. Farrell, P. M. Pellegrino, and S. Singamaneni, “Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced raman scattering,” Small 10, 4287–4292 (2014).
[PubMed]

N. A. Cinel, S. Butun, G. Ertas, and E. Ozbay, “‘fairy chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9, 531–537 (2013).
[Crossref]

Z. Hu, Z. Liu, L. Li, B. Quan, Y. Li, J. Li, and C. Z. Gu, “Wafer-scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering,” Small 10, 3933–3942 (2014).
[Crossref] [PubMed]

Thin Solid Films (1)

L. Abelmann and C. Lodder, “Oblique evaporation and surface diffusion,” Thin Solid Films 305, 1–21 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Top-view SEM images of the three-layer substrates with nominally (a) 20 nm, (b) 30 nm, and (c) 60 nm thick silver on the top. The insets in (a) are photographs of the three-(left) and single-layer (right) substrates with nominally 20 nm thick silver on the top. The inset in (b) is the corresponding cross-sectional SEM image. (d) Histogram of the effective radius of silver nanoparticles when the nominal thickness of the top silver layer is 30 nm.
Fig. 2
Fig. 2 Absorption spectra of (a) three-layer and (b) single-layer substrates with different nominal thickness of the top silver layer.
Fig. 3
Fig. 3 SERS spectra of 4-MBT on (a) three-layer and (b) single-layer substrates with different nominal thickness of the top silver layer. (c) Intensity variation trend of the characteristic peaks of 1077 cm−1 (red) and 1592 cm−1 (black) as a function of the nominal thickness of the top silver layer.
Fig. 4
Fig. 4 FDTD simulation of structures with random metal nanoparticles. (a, b) Absorption spectra of the three- and single-layer substrates with nominally 30 nm Ag on top. The blue line is the average of 16 instances (light cyan lines) and the red line is the instance which is closest to the average. For reference, the measured spectra from the macroscopic sample are also shown (black line). (c, d) Electric field intensity distribution (at the wavelength of 633 nm; normalized to the intensity of incident light) on the top surface of the structures with nominally 30 nm Ag. (e, f) Absorption spectra of three- and single-layer substrates with different nominal thickness of the top silver layer, indicating larger absorption-peak shifting for the three-layer substrates than the single-layer ones.
Fig. 5
Fig. 5 (a) Cross-sectional SEM image showing 50/10/50 nm (the thickness of bottom/spacer/top layer, quoted from the film thickness monitor) Ag/SiO2/Ag deposited on macroporous black silicon with blade-like walls of about 70° slope. The top silver layer has a brighter contrast than that of the bottom layer. One MIM nanoparticle is highlighted by a red ellipse, with two bright particles separated by a dark spacer. (b) An enlarged view of the rectangular window in (a). The red arrows highlight the air gaps between the silver particles within the same layer, and the green arrows highlight the dielectric gaps between two silver layers. (c) Cross-sectional SEM image showing 50/10/20 nm Ag/Al2O3/Ag deposited on silicon walls of an inverted pyramidal pit. The top silver layer has a brighter contrast than that of the bottom layer. (d) Cross-sectional SEM image showing the titled MIM nanoparticles obtained by depositing 50/10/60 nm Ag/Al2O3/Ag on silicon walls with slope of about 70°. The green arrows highlight the dielectric gaps between two silver layers. (e) Schematic illustration of electromagnetic “hot spots” between metal nanoparticles on a slope.
Fig. 6
Fig. 6 Two-photon induced luminescence images of silver deposited on silicon substrates with pores/pits arranged in a hexagonal array of 6 μm period: (a) 50/10/30 nm Ag/Al2O3/Ag deposited on macroporous black silicon, (b) 50 nm Ag deposited on macro-porous black silicon, (c) 50/10/30 nm Ag/Al2O3/Ag deposited on array of inverted pyramidal pits. The images (only show the green channel) were taken at the same excitation and detection levels. The substrates have an additional 50 nm Al2O3 coating to protect against oxygen and water in the air. (d) Raman spectra of 4-MBT molecules measured from inverted pyramidal pits and planar silicon decorated with different Ag nanostructures under 532 nm laser excitation. (e) Repeatability measurement of Raman spectra of 4-MBT molecules from 10 inverted pyramidal pits decorated with 50/10/30 nm Ag/Al2O3/Ag, showing the uniformity of SERS signal. For each measurement, the cross hair was placed on the apex of individual pit, as shown by the inset in (d). The coefficient of variation (the standard deviation divided by the mean intensity) is 6.2% for the 1077 cm−1 peak, and 7.8% for 1592 cm−1 peak.

Metrics