Abstract

Light-confinement phenomena on semiconducting ZnO nanograting structures were directly observed by means of confocal microscopy-based scanning photocurrent microscopy (SPCM), exhibiting a high spatial resolution distinguishing the 200 nm width of the ZnO nanostructure. Its ability to map the reflectance and photocurrent at the same time enables spatially resolved multiple light-confinement phenomena to be exhibited, such as the diffraction mode and the localized cavity-like resonant mode. Through diverse periods of the nanograting, in this case 600, 800 and 1000 nm, and various incident light intensity levels, we confirmed the period-dependent confined modes and thus established the ratio of the photocurrent change according to the incident intensity. Our study can provide accurate and comprehensive information regarding light confinement depending on the nanostructured geometry compared to conventional methods. This can assist those involved in creating effective designs of light management systems in nanostructured optoelectronics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface-plasmon-enhanced visible-light emission of ZnO/Ag grating structures

Minji Gwon, Eunsongyi Lee, Dong-Wook Kim, Ki-Ju Yee, Min Jung Lee, and Youn Sang Kim
Opt. Express 19(7) 5895-5901 (2011)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells

Jérôme Michallon, Davide Bucci, Alain Morand, Mauro Zanuccoli, Vincent Consonni, and Anne Kaminski-Cachopo
Opt. Express 22(S4) A1174-A1189 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
    [Crossref]
  2. U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
    [Crossref] [PubMed]
  3. D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
    [Crossref]
  4. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
    [Crossref] [PubMed]
  5. A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(10), A385–A394 (2012).
    [Crossref] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  7. M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
    [Crossref] [PubMed]
  8. J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
    [Crossref]
  9. F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
    [Crossref]
  10. C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
    [Crossref]
  11. R. Graham and D. Yu, “Mod. “Scanning photocurrent microscopy in semiconductor nanostructures,” Phys. Lett. B 27(25), 1330018 (2013).
  12. P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
    [PubMed]
  13. M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
    [Crossref] [PubMed]
  14. E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
    [Crossref] [PubMed]
  15. S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
    [Crossref] [PubMed]
  16. G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
    [Crossref] [PubMed]
  17. H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
    [Crossref] [PubMed]
  18. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
    [Crossref] [PubMed]
  19. E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
    [Crossref] [PubMed]
  20. C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
    [Crossref]
  21. M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
    [Crossref] [PubMed]

2015 (2)

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
[Crossref]

2014 (3)

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

2013 (3)

R. Graham and D. Yu, “Mod. “Scanning photocurrent microscopy in semiconductor nanostructures,” Phys. Lett. B 27(25), 1330018 (2013).

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

2012 (6)

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

U. Palanchoke, V. Jovanov, H. Kurz, P. Obermeyer, H. Stiebig, and D. Knipp, “Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts,” Opt. Express 20(6), 6340–6347 (2012).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(10), A385–A394 (2012).
[Crossref] [PubMed]

2011 (3)

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

2007 (1)

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

2004 (1)

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

Afshinmanesh, F.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Ahn, S. H.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Avouris, P.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Balasubramanian, K.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Bao, X.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Bauer, R.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Beck, F. J.

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Bernechea, M.

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Bocksrocker, T.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Bornstein, J.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Branz, H. M.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Breuer, S.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Brongersma, M.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

A. P. Vasudev, J. A. Schuller, and M. L. Brongersma, “Nanophotonic light trapping with patterned transparent conductive oxides,” Opt. Express 20(10), A385–A394 (2012).
[Crossref] [PubMed]

Burghard, M.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Chang, W. S.

C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
[Crossref]

Chen, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Chen, P.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Chen, X.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Chien, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Choi, D. G.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Choi, J. H.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Chong, E.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Cui, Y.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Curto, A. G.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Dastoor, P. C.

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

de Arquer, F. P. G.

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Dorfmüller, J.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Engel, M.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Fan, S.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Fanning, T. R.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Frohne, H.

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

Fu, L.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Fu, N.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Gerken, M.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Geyer, U.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Gopinath, P.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

Graham, R.

R. Graham and D. Yu, “Mod. “Scanning photocurrent microscopy in semiconductor nanostructures,” Phys. Lett. B 27(25), 1330018 (2013).

Green, A. A.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Grover, S.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Gu, A.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Guo, L. J.

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

Harris, J. S.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Hasoon, F.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Hauss, J.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Hersam, M. C.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Hikita, Y.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Holdsworth, J. L.

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

Howell, S. L.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Hsiao, Y. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Hsu, C. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Huang, M. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Huffaker, D. L.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Huo, Y.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Hwang, H. Y.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Jagadish, C.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Jeong, J. H.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Jia, J.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Jinesh, K. B.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

John, H.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

Jovanov, V.

Jung, J. Y.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Kang, Y.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Katzenmeyer, A. M.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Kavitha, M. K.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

Kern, K.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Kim, S.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Knipp, D.

Koleske, D. D.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Konstantatos, G.

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Krupke, R.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Kuo, C. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Kurz, H.

Lauhon, L. J.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Lee, B. G.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Lee, E. J.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Lee, E. S.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Lee, J.

C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
[Crossref]

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Lee, Y. H.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Lemmer, U.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Léonard, F.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Li, Q.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Li, S.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Li, W.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Lian, B.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Liang, D.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Liu, X.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

McNeill, C. R.

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

Mews, A.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Obermeyer, P.

Padalkar, S.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Palanchoke, U.

Park, C.

C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
[Crossref]

Park, I.

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Parkinson, P.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Philip, R.

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Riedel, B.

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

Schroeter, P.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Schuller, J. A.

Shapiro, J.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Shen, Z.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Steiner, M.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Stiebig, H.

Sun, J.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Sundaram, R. S.

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

Tan, H. H.

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

Tan, M.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Teplin, C. W.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Vasudev, A. P.

Vogelgesang, R.

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Wang, G. T.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Wang, J.

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

Wang, K. X.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Wang, S.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Wierer, J. J.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Wong, H. S. P.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Wong, P. S.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Wu, J. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Xu, G.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Yao, Y.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Ye, G.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Yoon, K.

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

Yu, D.

R. Graham and D. Yu, “Mod. “Scanning photocurrent microscopy in semiconductor nanostructures,” Phys. Lett. B 27(25), 1330018 (2013).

Yu, Z.

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Yuan, H.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Zhang, S. C.

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

ACS Nano (3)

M. Engel, M. Steiner, R. S. Sundaram, R. Krupke, A. A. Green, M. C. Hersam, and P. Avouris, “Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices,” ACS Nano 6(8), 7303–7310 (2012).
[Crossref] [PubMed]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3(8), 2304–2310 (2009).
[Crossref] [PubMed]

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

D. Liang, Y. Huo, Y. Kang, K. X. Wang, A. Gu, M. Tan, Z. Yu, S. Li, J. Jia, X. Bao, S. Wang, Y. Yao, H. S. P. Wong, S. Fan, Y. Cui, and J. S. Harris, “Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays,” Adv. Energy Mater. 2(10), 1254–1260 (2012).
[Crossref]

Appl. Phys. Lett. (2)

J. Hauss, T. Bocksrocker, B. Riedel, U. Geyer, U. Lemmer, and M. Gerken, “Metallic Bragg-gratings for light management in organic light-emitting devices,” Appl. Phys. Lett. 99(10), 103303 (2011).
[Crossref]

F. P. G. de Arquer, F. J. Beck, M. Bernechea, and G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors,” Appl. Phys. Lett. 100(4), 043101 (2012).
[Crossref]

Energy Environ. Sci. (1)

C. W. Teplin, B. G. Lee, T. R. Fanning, J. Wang, S. Grover, F. Hasoon, R. Bauer, J. Bornstein, P. Schroeter, and H. M. Branz, “Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells,” Energy Environ. Sci. 5(8), 8193–8198 (2012).
[Crossref]

J. Phys. Chem. C (1)

C. Park, J. Lee, and W. S. Chang, “Geometrical separation of defect states in ZnO nanorods and their morphology-dependent correlation between photoluminescence and photoconductivity,” J. Phys. Chem. C 119(29), 16984–16990 (2015).
[Crossref]

Nano Lett. (4)

P. Parkinson, Y. H. Lee, L. Fu, S. Breuer, H. H. Tan, and C. Jagadish, “Three-dimensional in situ photocurrent mapping for nanowire photovoltaics,” Nano Lett. 13(4), 1405–1409 (2013).
[PubMed]

S. L. Howell, S. Padalkar, K. Yoon, Q. Li, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy,” Nano Lett. 13(11), 5123–5128 (2013).
[Crossref] [PubMed]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

C. R. McNeill, H. Frohne, J. L. Holdsworth, and P. C. Dastoor, “Near-field scanning photocurrent measurements of polyfluorene blend devices: directly correlating morphology with current generation,” Nano Lett. 4(12), 2503–2507 (2004).
[Crossref]

Nanoscale Res. Lett. (1)

E. Chong, S. Kim, J. H. Choi, D. G. Choi, J. Y. Jung, J. H. Jeong, E. S. Lee, J. Lee, I. Park, and J. Lee, “Interior-architectured ZnO nanostructure for enhanced electrical conductivity via stepwise fabrication process,” Nanoscale Res. Lett. 9(1), 428 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat. Mater. 13(5), 451–460 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S. C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang, and Y. Cui, “Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction,” Nat. Nanotechnol. 10(8), 707–713 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

M. K. Kavitha, K. B. Jinesh, R. Philip, P. Gopinath, and H. John, “Defect engineering in ZnO nanocones for visible photoconductivity and nonlinear absorption,” Phys. Chem. Chem. Phys. 16(45), 25093–25100 (2014).
[Crossref] [PubMed]

Phys. Lett. B (1)

R. Graham and D. Yu, “Mod. “Scanning photocurrent microscopy in semiconductor nanostructures,” Phys. Lett. B 27(25), 1330018 (2013).

Small (1)

E. J. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang, N. Fu, A. Mews, M. Burghard, and K. Kern, “Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy,” Small 3(12), 2038–2042 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The photograph (a) shows the patterned ZnO nanograting on a two-inch wafer. The cross-sectional view of the SEM image (b) shows the nearly rectangular structure of the nanobeam. The scale bar in the inset is 300 nm. Top view of the SEM images shows the ZnO nanograting structures exhibiting periods of 1000 nm (c), 800 nm (d) and 600 nm (e). Though these samples have few fragments throughout the area, this factor did not significantly affect our experiment. (f) XRD patterns of the three samples.
Fig. 2
Fig. 2 SEM images showing top views of samples, in this case with 1000 nm (a), the 800 nm (b) and the 600 nm periods, presenting the dissimilar morphologies of the samples resulting from the subtle conditions of the hydrothermal growth and the seed layers prepared by UV-NIL. The scale bar is 800 nm. The micro-PL spectra (d) show the energy states of semiconducting ZnO nanorods. In the normalized graph, the dissimilar positions of peaks in the NBE spectra indicate the nonidentical crystallinity among samples. In addition, the different intensities of the DLE spectra present the different defect energy states.
Fig. 3
Fig. 3 The schematic (a) of the SPCM based on confocal microscopy. The reflectance coming from the reflected light has a high optical resolution due to the pin hole. After fabricating MSM-type devices with the semiconducting ZnO nanograting, a photocurrent of several nA was measured by means of a current preamplifier and a lock-in technique, which together remove s environmental noise during the measurement. The chopping frequency depending on the carrier dynamics and noises in the device was set to 2 kHz in our experiments. The reflectance and photocurrent were mapped simultaneously by a 2D piezo-stage. The schematic diagram (b) represents the experimental environment of the mapping on the ZnO nanograting structure.
Fig. 4
Fig. 4 Each periodic nanograting sample was simultaneously mapped into reflectance (a) and photocurrent (c) images. The white scale bar is 300 nm and the black dashed rectangles indicate the ZnO nanobeam. The stacked graph (b) is the 1D data resulting from the summation of each reflectance images (a) in the vertical direction, with identical y-axis ranges. The stacked graph (d) represents the photocurrent subtracted from the offset value after the summation of each pixel of photocurrent image (c) in the vertical direction. The sky-blue rectangles in both graphs (b,d) indicate the ZnO nanobeam, and the high (the black curves) and low (the gray curves) intensities of the incident light are 387 and 34 μW/cm2, respectively. In figure (b), the gold (for 387 μW/cm2) and green-yellow (for 34 μW/cm2) dashed lines indicate the maximum intensity of reflectance in the 1000 nm period. That is, as the period becomes narrower, the maximum reflectance under high intensity of the incident light increases, whereas the maximum under a low intensity of the incident light is reduced.
Fig. 5
Fig. 5 Simultaneously measured reflectance (a) and photocurrent (b) according to various intensities of incident light were prepared by subtracting the offset value (the minimum value) from the maximum value in order to relatively compare the geometrical effects for light confinement among different periods. The pink dashed arrows in the inset of both graphs indicate the inflection point which means that the geometrical effect is nearly saturated above 387 μW/cm2.
Fig. 6
Fig. 6 (a) Changing photocurrent shapes subtracted from offset value near the ZnO nanobeam according to the period and intensity of light. (b) The maximum photocurrent divided by the offset photocurrent. The arrows present the maximum position of the photocurrent with respect to the intensity of light. The stacked schematic (c) presents the photocurrent shape on the ZnO nanobeam according to the period. The red dashed lines indicate the light paths resulting from the diffraction mode. The yellow dashed lines represent the localized cavity-like resonances. The red dashed ellipses denote the illuminated portion on the surface of the ZnO nanobeam due to the diffraction mode. The blue arrows present the ascending illumination of the diffraction mode due to the reduced period.

Metrics