Abstract

Tb4+-Yb3+ co-doped NaYF4 nanoparticles (NPs) are prepared by sintering the as-synthesized NaYF4:Tb3+, Yb3+ NPs at 380°C under air atmosphere. The oxidization of Tb3+ ions to Tb4+ ions in NaYF4 NPs after sintering is demonstrated through X-ray photoelectron spectroscopy (XPS). The near-infrared (NIR) downconversion (DC) luminescence of Tb4+-Yb3+ couple is measured and investigated for the first time. The results show that DC luminescence of Tb4+-Yb3+ couple enhance obviously compared with Tb3+-Yb3+ couple in as-synthesized sample. The enhancement factor is about 14 and 19 excited at 379nm and 487nm, respectively. On analyzing the exponential dependence of NIR fluorescence intensity on the pumping power, we reveal that the energy transfer (ET) mechanism from Tb4+ to Yb3+ in NaYF4 NPs occurs by the single-step ET process. Our study may provide a promising DC layer on the top of silicon-based solar cells to improve the photovoltaic conversion efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Plasmon enhanced near-infrared downconversion luminescence of β-NaYF4:Pr3+ nanoparticles by high-ordered Ag nanopillar arrays with tunable nanogaps

Biao Zheng, Jun Wang, Lin Lin, Jinquan Hong, Lili Huang, Yuliang Li, Zhuohong Feng, Zhezhe Wang, and Zhiqiang Zheng
Opt. Mater. Express 8(11) 3401-3409 (2018)

Enhancement of the near-infrared emission in novel quantum cutting SiO2:Tb3+, Yb3+ thin films by Ag species

Siqin Wang, Jianbei Qiu, Xuhui Xu, Qi Wang, Dacheng Zhou, Zhengwen Yang, and Zhiguo Song
Opt. Mater. Express 6(4) 1065-1078 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
    [Crossref]
  2. D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
    [Crossref]
  3. L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
    [Crossref]
  4. X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNb4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
    [Crossref] [PubMed]
  5. L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
    [Crossref]
  6. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express 19(3), 1749–1754 (2011).
    [Crossref] [PubMed]
  7. B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
    [Crossref] [PubMed]
  8. Y. S. Xu, F. Huang, B. Fan, C. G. Lin, S. X. Dai, L. Y. Chen, Q. H. Nie, H. L. Ma, and X. H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39(8), 2225–2228 (2014).
    [Crossref] [PubMed]
  9. A. Guille, A. Pereira, C. Martinet, and B. Moine, “Quantum cutting in CaYAlO4: Pr3+, Yb3+.,” Opt. Lett. 37(12), 2280–2282 (2012).
    [Crossref] [PubMed]
  10. I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
    [Crossref]
  11. Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).
  12. Y. Ying and Y. Ru-Dong, “Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates,” Polyhedron 11(8), 963–966 (1992).
    [Crossref]
  13. H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
    [Crossref]
  14. R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
    [Crossref]
  15. Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
    [Crossref]
  16. Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
    [Crossref] [PubMed]
  17. B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
    [Crossref] [PubMed]
  18. J. F. Moulder and R. C. King, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, 1995).
  19. L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
    [Crossref]
  20. J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
    [Crossref] [PubMed]
  21. D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
    [Crossref]
  22. Y.-S. Xu, F. Huang, B. Fan, C.-G. Lin, S.-X. Dai, L.-Y. Chen, Q.-H. Nie, H.-L. Ma, and X.-H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39(8), 2225–2228 (2014).
    [Crossref] [PubMed]
  23. J. Zhou, Y. Teng, X. Liu, S. Ye, X. Xu, Z. Ma, and J. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
    [Crossref] [PubMed]

2015 (8)

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNb4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
[Crossref] [PubMed]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

2014 (4)

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Y.-S. Xu, F. Huang, B. Fan, C.-G. Lin, S.-X. Dai, L.-Y. Chen, Q.-H. Nie, H.-L. Ma, and X.-H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39(8), 2225–2228 (2014).
[Crossref] [PubMed]

Y. S. Xu, F. Huang, B. Fan, C. G. Lin, S. X. Dai, L. Y. Chen, Q. H. Nie, H. L. Ma, and X. H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39(8), 2225–2228 (2014).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

2013 (1)

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

J. Zhou, Y. Teng, X. Liu, S. Ye, X. Xu, Z. Ma, and J. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

2009 (2)

L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[Crossref]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

2008 (1)

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

2002 (1)

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

1992 (1)

Y. Ying and Y. Ru-Dong, “Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates,” Polyhedron 11(8), 963–966 (1992).
[Crossref]

Aarts, L.

L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[Crossref]

Boon, W.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Borrero-González, L.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Brito, H.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Cao, L.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

Carvalho, J.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Chen, B.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Chen, D.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Chen, J.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Chen, L.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Chen, L. Y.

Chen, L.-Y.

Chen, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNb4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
[Crossref] [PubMed]

Chen, Y.

Dai, N.

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

Dai, S. X.

Dai, S.-X.

Deng, C.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

Deng, K.

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

Ehrt, D.

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

Fan, B.

Fan, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Felinto, M.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Feng, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Gao, Y.

Gong, T.

Guille, A.

Hao, Z.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

He, L.

Hu, L.

Huang, F.

Huang, P.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Huang, R.

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Jiang, Y.

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Kieboom, T.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Kumar, K.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Li, J.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

Li, S.

Li, Y.

Li, Z.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Lin, C. G.

Lin, C.-G.

Lin, H.

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Lin, L.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Liu, Q.

Liu, X.

Liu, Y.

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Liu, Z.

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

Luo, Y.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Ma, H. L.

Ma, H.-L.

Ma, Z.

Martinet, C.

Meijerink, A.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[Crossref]

Moine, B.

Nie, Q. H.

Nie, Q.-H.

Nunes, L.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Peng, D.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Pereira, A.

Qiao, X.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Qiu, J.

Rabouw, F.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Rai, S. B.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Rao, X.

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Ru-Dong, Y.

Y. Ying and Y. Ru-Dong, “Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates,” Polyhedron 11(8), 963–966 (1992).
[Crossref]

Salamo, G. J.

Tang, L.

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

Teng, Y.

Terra, I.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Terrile, M.

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

Van der Ende, B.

L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[Crossref]

Verma, R. K.

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Wang, F.

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Wang, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Wang, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Wei, X.

Weng, F.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Xia, Y.

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Xu, S.

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

Xu, X.

Xu, Y. S.

Xu, Y.-S.

Yang, G.

Yang, L.

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

Ye, S.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

J. Zhou, Y. Teng, X. Liu, S. Ye, X. Xu, Z. Ma, and J. Qiu, “Intense infrared emission of Er3+ in Ca8Mg(SiO4)4Cl2 phosphor from energy transfer of Eu2+ by broadband down-conversion,” Opt. Express 18(21), 21663–21668 (2010).
[Crossref] [PubMed]

Yin, M.

Ying, Y.

Y. Ying and Y. Ru-Dong, “Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates,” Polyhedron 11(8), 963–966 (1992).
[Crossref]

Yu, D.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Yu, Y.

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

Zhang, J.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Zhang, L.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Zhang, M.

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Zhang, Q.

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Zhang, X.

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

Zhang, X. H.

Zhang, X.-H.

Zhang, Y.

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Zhao, X.

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Zheng, B.

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

Zheng, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Zhou, J.

Angew. Chem. Int. Ed. Engl. (1)

B. Chen, D. Peng, X. Chen, X. Qiao, X. Fan, and F. Wang, “Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes,” Angew. Chem. Int. Ed. Engl. 54(43), 12788–12790 (2015).
[Crossref] [PubMed]

Appl. Phys. Adv. Mater. (1)

Z. Liu, N. Dai, L. Yang, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. Adv. Mater. 119(2), 553–557 (2015).

Electrochim. Acta (1)

Y. Liu, Y. Xia, Y. Jiang, M. Zhang, and X. Zhao, “Coupling effects of Au-decorated core-shell β-NaYF4: Er/Yb@ SiO2 microprisms in dye-sensitized solar cells: plasmon resonance versus upconversion,” Electrochim. Acta 180, 394–400 (2015).
[Crossref]

Inorg. Chem. (1)

J. Li, L. Chen, Z. Hao, X. Zhang, L. Zhang, Y. Luo, and J. Zhang, “Efficient Near-Infrared Downconversion and Energy Transfer Mechanism Of Ce3+/Yb3+ Codoped Calcium Scandate Phosphor,” Inorg. Chem. 54(10), 4806–4810 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (1)

L. Lin, J. Chen, C. Deng, L. Tang, D. Chen, and L. Cao, “Broadband near-infrared quantum-cutting by cooperative energy transfer in Yb3+-Bi3+ co-doped CaTiO3 for solar cells,” J. Alloys Compd. 640, 280–284 (2015).
[Crossref]

J. Appl. Phys. (2)

L. Aarts, B. Van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4: Er, Yb,” J. Appl. Phys. 106(2), 023522 (2009).
[Crossref]

I. Terra, L. Borrero-González, J. Carvalho, M. Terrile, M. Felinto, H. Brito, and L. Nunes, “Spectroscopic properties and quantum cutting in Tb3+–Yb3+ co-doped ZrO2 nanocrystals,” J. Appl. Phys. 113(7), 073105 (2013).
[Crossref]

J. Phys. Chem. C (1)

D. Chen, Y. Yu, Y. Wang, P. Huang, and F. Weng, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C 113(16), 6406–6410 (2009).
[Crossref]

J. Rare Earths (1)

L. Lin, H. Lin, Z. Wang, B. Zheng, J. Chen, S. Xu, Z. Feng, and Z. Zheng, “Luminescence properties of alkali metal ions sensitized CaFCl: Tb3+ nanophosphors,” J. Rare Earths 33(10), 1026–1030 (2015).
[Crossref]

Nanotechnology (1)

Z. Li and Y. Zhang, “An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF(4):Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence,” Nanotechnology 19(34), 345606 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (2)

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, X. Rao, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Phys. Rev. B (1)

D. Yu, F. Rabouw, W. Boon, T. Kieboom, S. Ye, Q. Zhang, and A. Meijerink, “Insights into the energy transfer mechanism in Ce3+− Yb3+ codoped YAG phosphors,” Phys. Rev. B 90(16), 165126 (2014).
[Crossref]

Polyhedron (1)

Y. Ying and Y. Ru-Dong, “Synthesis and characterization of tetravalent terbium complexes of alkali terbium hexaoxidoiodates,” Polyhedron 11(8), 963–966 (1992).
[Crossref]

Solid State Sci. (1)

R. K. Verma, K. Kumar, and S. B. Rai, “Inter-conversion of Tb3+ and Tb4+ states and its fluorescence properties in MO–Al2O3: Tb (M = Mg, Ca, Sr, Ba) phosphor materials,” Solid State Sci. 12(7), 1146–1151 (2010).
[Crossref]

Other (1)

J. F. Moulder and R. C. King, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) XRD patterns of the NaYF4: x%Tb,10%Yb (x = 5,10,15,20,30) NPs after sintering. (b) Tb 4d photoelectron spectrum of NaYF4:15%Tb,10%Yb NPs after sintering. Inset: SEM image of NaYF4:15%Tb,10%Yb NPs before sintering.
Fig. 2
Fig. 2 (a) UV-Vis excitation spectra (λem = 544nm) and (b) emission spectra (λex = 379nm) of NaYF4: Tb3+, Yb3+ NPs (dash lines) and NaYF4: Tb4+, Yb3+ NPs (solid lines).
Fig. 3
Fig. 3 (a),(b) NIR emission spectra under 379nm and 487nm excitation; (c) UV-Vis excitation spectra monitoring at 977nm of NaYF4:Tb3+,Yb3+ NPs (dash lines) and NaYF4:Tb4+, Yb3+ NPs (solid lines), respectively.
Fig. 4
Fig. 4 (a) UV-Vis excitation spectra (λem = 977nm) of the NaYF4:x%Tb4+,10%Yb3+ NPs. Inset: the excitation peak area of Tb3+ and Tb4+ in the NaYF4: x%Tb4+, 10%Yb3+ NPs (x = 0,5,10,15,20,30). (b) NIR emission spectra (λex = 379nm) of NaYF4:Tb4+,Yb3+ NPs under different sintering time.
Fig. 5
Fig. 5 (a) Log-log plot for dependency of 977nm NIR emission intensity on pumping power in NaYF4:Tb4+,Yb3+ NPs excited at 379nm and 487nm, respectively. (b) Energy levels diagrams of Tb4+-Yb3+ couple in the NIR DC energy transfer.

Metrics