Abstract

Amorphous and polycrystalline ZnO-Cu2-xSe composite thin films were deposited by rf sputtering using a single target prepared from mixtures of ZnSe and Cu2O powders. Films were grown from three different targets with Cu2O atomic concentrations of 12, 36 and 60% for substrate temperatures between room temperature and 400 °C. The transmittance, reflectance and electrical properties were dependent upon the Cu2O concentration in the target and on the substrate temperature. The optical properties of the polycrystalline films were determined by the copper selenide phases present in the films, which allows foreseeing applications as coatings for windowpanes with strong infrared rejection. The electrical characterization showed that the ZnO-Cu2-xSe composite films are n-type with resistivity values in the range from 3x10−3 to 3x103 Ω⋅cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amorphous In2Ga2ZnO7 films with adjustable structural, electrical and optical properties deposited by magnetron sputtering

Xianjie Zhou, Jiwen Xu, Ling Yang, Xiaosheng Tang, Qiuping Wei, and Zhiming Yu
Opt. Mater. Express 5(7) 1628-1634 (2015)

High performance Cu2O/ZnO core-shell nanorod arrays synthesized using a nanoimprint GaN template by the hydrothermal growth technique

Yung-Sheng Chen, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-Yin Chen, Ann-Kuo Chu, Chie-Tong Kuo, and Hsiang-Chen Wang
Opt. Mater. Express 4(7) 1473-1486 (2014)

Effect of oxygen partial pressure in deposition ambient on the properties of RF magnetron sputter deposited Gd2O3 thin films

S. Maidul Haque, Rajnarayan De, S. Tripathi, C. Mukherjee, A. K. Yadav, Dibyendu Bhattacharyya, S. N. Jha, and N. K. Sahoo
Appl. Opt. 56(22) 6114-6125 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
    [Crossref]
  2. S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
    [Crossref]
  3. G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
    [Crossref]
  4. A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
    [Crossref]
  5. M. Afzaal and P. O’Brien, “Recent developments in II–VI and III–VI semiconductors and their applications in solar cells,” J. Mater. Chem. 16(17), 1597–1602 (2006).
    [Crossref]
  6. J. Sharma and S. K. Tripathi, “Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films,” Phys. B. 406(9), 1757–1762 (2011).
    [Crossref]
  7. K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).
  8. N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
    [Crossref]
  9. R. Adhi Wibowo and K. Ho Kim, “Band gap engineering ofRF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application,” Sol. Energy Mater. Sol. Cells 93(6-7), 941–944 (2009).
    [Crossref]
  10. Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
    [Crossref]
  11. R. J. Stirn and A. Nouhi, “Low‐temperature deposition of low resistivity ZnSe films by reactive sputtering,” Appl. Phys. Lett. 48(26), 1790–1792 (1986).
    [Crossref]
  12. P. Kumar and K. Singh, “Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots,” J. Nanopart. Res. 13(4), 1613–1620 (2011).
    [Crossref]
  13. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
    [Crossref]
  14. Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
    [Crossref] [PubMed]
  15. Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
    [Crossref]
  16. D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version (CRC Press, 2005).
  17. H. Ahn and Y. Um, “Thickness dependences of the structural optical, and electrical properties of Cu2Se thin films grown by using DC magnetron sputtering,” J. Korean Phys. Soc. 64(10), 1600–1604 (2014).
    [Crossref]
  18. W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
    [Crossref]
  19. K. Yamamoto and S. Kashida, “X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method,” Solid State Ion. 48(3-4), 241–248 (1991).
    [Crossref]
  20. A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
    [Crossref]

2015 (1)

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

2014 (3)

G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
[Crossref]

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

H. Ahn and Y. Um, “Thickness dependences of the structural optical, and electrical properties of Cu2Se thin films grown by using DC magnetron sputtering,” J. Korean Phys. Soc. 64(10), 1600–1604 (2014).
[Crossref]

2013 (3)

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
[Crossref]

2011 (2)

J. Sharma and S. K. Tripathi, “Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films,” Phys. B. 406(9), 1757–1762 (2011).
[Crossref]

P. Kumar and K. Singh, “Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots,” J. Nanopart. Res. 13(4), 1613–1620 (2011).
[Crossref]

2010 (1)

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

2009 (1)

R. Adhi Wibowo and K. Ho Kim, “Band gap engineering ofRF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application,” Sol. Energy Mater. Sol. Cells 93(6-7), 941–944 (2009).
[Crossref]

2008 (1)

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

2006 (2)

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

M. Afzaal and P. O’Brien, “Recent developments in II–VI and III–VI semiconductors and their applications in solar cells,” J. Mater. Chem. 16(17), 1597–1602 (2006).
[Crossref]

2005 (1)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

1991 (1)

K. Yamamoto and S. Kashida, “X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method,” Solid State Ion. 48(3-4), 241–248 (1991).
[Crossref]

1986 (1)

R. J. Stirn and A. Nouhi, “Low‐temperature deposition of low resistivity ZnSe films by reactive sputtering,” Appl. Phys. Lett. 48(26), 1790–1792 (1986).
[Crossref]

1973 (1)

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

1966 (1)

K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).

Adhi Wibowo, R.

R. Adhi Wibowo and K. Ho Kim, “Band gap engineering ofRF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application,” Sol. Energy Mater. Sol. Cells 93(6-7), 941–944 (2009).
[Crossref]

Afzaal, M.

M. Afzaal and P. O’Brien, “Recent developments in II–VI and III–VI semiconductors and their applications in solar cells,” J. Mater. Chem. 16(17), 1597–1602 (2006).
[Crossref]

Ahn, H.

H. Ahn and Y. Um, “Thickness dependences of the structural optical, and electrical properties of Cu2Se thin films grown by using DC magnetron sputtering,” J. Korean Phys. Soc. 64(10), 1600–1604 (2014).
[Crossref]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Arreola-Jardón, G.

G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
[Crossref]

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Carmona, J.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Charvet, S.

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Chen, G.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Dahlberg, D.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Dima, I.

K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).

Ding, T.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Ho Kim, K.

R. Adhi Wibowo and K. Ho Kim, “Band gap engineering ofRF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application,” Sol. Energy Mater. Sol. Cells 93(6-7), 941–944 (2009).
[Crossref]

Jiang, J.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Jiménez-Sandoval, O.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Jiménez-Sandoval, S.

G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
[Crossref]

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Jomard, F.

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Karlsson, L. H.

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

Kashida, S.

K. Yamamoto and S. Kashida, “X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method,” Solid State Ion. 48(3-4), 241–248 (1991).
[Crossref]

Kogut, A. N.

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

Kumar, P.

P. Kumar and K. Singh, “Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots,” J. Nanopart. Res. 13(4), 1613–1620 (2011).
[Crossref]

Levalois, M.

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Li, J.

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Lin, J.

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Liu, Y.

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Lozada-Morales, R.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Mel’nik, A. I.

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

Meléndez-Lira, M.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Mendoza-Galván, A.

G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
[Crossref]

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

Mikolaichuk, A. G.

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

Miles, R. W.

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

Morale, M.

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Morkoç, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Nakamura, A.

Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
[Crossref]

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

Nouhi, A.

R. J. Stirn and A. Nouhi, “Low‐temperature deposition of low resistivity ZnSe films by reactive sputtering,” Appl. Phys. Lett. 48(26), 1790–1792 (1986).
[Crossref]

O’Brien, P.

M. Afzaal and P. O’Brien, “Recent developments in II–VI and III–VI semiconductors and their applications in solar cells,” J. Mater. Chem. 16(17), 1597–1602 (2006).
[Crossref]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Persson, P. O. Å.

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

Pirogova, N. V.

K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).

Prathap, P.

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

Ramakrishna Reddy, K. T.

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Romanishin, B. M.

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

Shalimova, K. V.

K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).

Sharma, J.

J. Sharma and S. K. Tripathi, “Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films,” Phys. B. 406(9), 1757–1762 (2011).
[Crossref]

Singh, K.

P. Kumar and K. Singh, “Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots,” J. Nanopart. Res. 13(4), 1613–1620 (2011).
[Crossref]

Stirn, R. J.

R. J. Stirn and A. Nouhi, “Low‐temperature deposition of low resistivity ZnSe films by reactive sputtering,” Appl. Phys. Lett. 48(26), 1790–1792 (1986).
[Crossref]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

Temmyo, J.

Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
[Crossref]

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

Tripathi, S. K.

J. Sharma and S. K. Tripathi, “Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films,” Phys. B. 406(9), 1757–1762 (2011).
[Crossref]

Um, Y.

H. Ahn and Y. Um, “Thickness dependences of the structural optical, and electrical properties of Cu2Se thin films grown by using DC magnetron sputtering,” J. Korean Phys. Soc. 64(10), 1600–1604 (2014).
[Crossref]

Venkata Subbaiah, Y. P.

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

Vivet, N.

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Wang, W.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Xie, S.

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Yamamoto, K.

K. Yamamoto and S. Kashida, “X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method,” Solid State Ion. 48(3-4), 241–248 (1991).
[Crossref]

Yang, Q.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Yi, J.

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

Zang, Z.

Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
[Crossref]

Z. Zang, A. Nakamura, and J. Temmyo, “Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application,” Opt. Express 21(9), 11448–11456 (2013).
[Crossref] [PubMed]

Zhang, L.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Zou, D.

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

Zúñiga-Romero, C. I.

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

Zuo, J.

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

Appl. Phys. Lett. (1)

R. J. Stirn and A. Nouhi, “Low‐temperature deposition of low resistivity ZnSe films by reactive sputtering,” Appl. Phys. Lett. 48(26), 1790–1792 (1986).
[Crossref]

CrystEngComm (1)

W. Wang, L. Zhang, G. Chen, J. Jiang, T. Ding, J. Zuo, and Q. Yang, “Cu2−xSe nanooctahedra: controllable synthesis and optoelectronic properties,” CrystEngComm 17(9), 1975–1981 (2015).
[Crossref]

J. Appl. Phys. (1)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005).
[Crossref]

J. Korean Phys. Soc. (1)

H. Ahn and Y. Um, “Thickness dependences of the structural optical, and electrical properties of Cu2Se thin films grown by using DC magnetron sputtering,” J. Korean Phys. Soc. 64(10), 1600–1604 (2014).
[Crossref]

J. Mater. Chem. (1)

M. Afzaal and P. O’Brien, “Recent developments in II–VI and III–VI semiconductors and their applications in solar cells,” J. Mater. Chem. 16(17), 1597–1602 (2006).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

D. Zou, S. Xie, Y. Liu, J. Lin, and J. Li, “Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se, Te): first-principles calculations,” J. Mater. Chem. A Mater. Energy Sustain. 1(31), 8888–8896 (2013).
[Crossref]

J. Nanopart. Res. (1)

P. Kumar and K. Singh, “Ferromagnetism in Cu-doped ZnSe semiconducting quantum dots,” J. Nanopart. Res. 13(4), 1613–1620 (2011).
[Crossref]

Mater. Lett. (1)

Z. Zang, A. Nakamura, and J. Temmyo, “Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature,” Mater. Lett. 92, 188–191 (2013).
[Crossref]

Opt. Express (1)

Phys. B. (1)

J. Sharma and S. K. Tripathi, “Effect of deposition pressure on structural, optical and electrical properties of zinc selenide thin films,” Phys. B. 406(9), 1757–1762 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

S. Jiménez-Sandoval, J. Carmona, R. Lozada-Morales, O. Jiménez-Sandoval, M. Meléndez-Lira, C. I. Zúñiga-Romero, and D. Dahlberg, “Effect of high copper and oxygen concentrations on the optical and electrical properties of (CdTe)xCuyOz films,” Sol. Energy Mater. Sol. Cells 90(15), 2248–2254 (2006).
[Crossref]

R. Adhi Wibowo and K. Ho Kim, “Band gap engineering ofRF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application,” Sol. Energy Mater. Sol. Cells 93(6-7), 941–944 (2009).
[Crossref]

Solid State Ion. (1)

K. Yamamoto and S. Kashida, “X-ray study of the cation distribution in Cu2Se, Cu1.8Se and Cu1.8S; analysis by the maximum entropy method,” Solid State Ion. 48(3-4), 241–248 (1991).
[Crossref]

Sov. Phys. J. (2)

A. N. Kogut, A. I. Mel’nik, A. G. Mikolaichuk, and B. M. Romanishin, “Structure and electrical properties of thin films of copper selenide,” Sov. Phys. J. 16(8), 1113–1116 (1973).
[Crossref]

K. V. Shalimova, I. Dima, and N. V. Pirogova, “Electrical properties of polycrystalline films of Zinc Selenide, cubic modification,” Sov. Phys. J. 2, 133–136 (1966).

Thin Solid Films (3)

N. Vivet, M. Morale, M. Levalois, S. Charvet, and F. Jomard, “Optimization of the structural, microstructural and optical properties of nanostructured Cr2+: ZnSe films deposited by magnetron co-sputtering for mid-infrared applications,” Thin Solid Films 519(1), 106–110 (2010).
[Crossref]

Y. P. Venkata Subbaiah, P. Prathap, K. T. Ramakrishna Reddy, R. W. Miles, and J. Yi, “Studies on ZnS0.5Se0.5 buffer based thin film solar cells,” Thin Solid Films 516(20), 7060–7064 (2008).
[Crossref]

A. Mendoza-Galván, G. Arreola-Jardón, L. H. Karlsson, P. O. Å. Persson, and S. Jiménez-Sandoval, “Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Thin Solid Films 571, 706–711 (2014).
[Crossref]

Vacuum (1)

G. Arreola-Jardón, S. Jiménez-Sandoval, and A. Mendoza-Galván, “Growth and characterization of CuCdTeO thin films sputtered from CdTe-CuO composite targets,” Vacuum 101, 130–135 (2014).
[Crossref]

Other (1)

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version (CRC Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 X-ray diffraction patterns of the films grown at different substrate temperatures for different concentrations of Cu2O in the target: a) 12 at.%, b) 36 at.% and c) 60 at.%.
Fig. 2
Fig. 2 X-ray diffraction patterns of the films grown with [Cu2O] = 60 at.% in the target at 400°C for different angles of incidence (α). “o” stands for orthorhombic and “h” for hexagonal phases.
Fig. 3
Fig. 3 Optical transmission spectra of the films grown at different substrate temperatures with [Cu2O] in the target of a) 12 at.%, b) 36 at.% and c) 60 at.%.
Fig. 4
Fig. 4 Transmission per thickness unit length or TTUL (τ = T/d, i.e. transmittance per in-depth micron) of the films at different substrate temperatures with [Cu2O] in the target of a) 12 at.%, b) 36 at.% and c) 60 at.%.
Fig. 5
Fig. 5 Atomic force microscopy images of the films surface grown at room temperature and at 400°C for a) 12 at.%, b) 36 at.% and c) 60 at.% of Cu2O in the target. Note the different vertical scales.
Fig. 6
Fig. 6 Scanning electron images of films grown at room temperature (RT) and 400°C for a) 12 at.% and b) 60 at.% of Cu2O in the target. The size bar is 100 nm for all cases.
Fig. 7
Fig. 7 Reflectance spectra of the films grown at different substrate temperatures with [Cu2O] in the target of a) 60 at.% and b) 36 at. %.
Fig. 8
Fig. 8 Resistivity of the films as a function of the substrate temperature. Inset: hot-point probe data of the film grown at 400°C from a target with [Cu2O] = 60 at. %.

Tables (1)

Tables Icon

Table 1 Root mean square (RMS) of the films surfaces obtained from AFM scans for the films grown at room temperature (RT) and at 400 °C.

Metrics