Abstract

We investigate the optical transmission of a monochromatic laser beam passing through an individual domain of a nematic liquid crystal formed by the polycarbonate surface. The domain has the radial orientation structure with a disclination line on the polymer surface, which gradually transforms to “pseudoplanar” alignment at the coherence distance ξ from the surface. The dependence of the optical transmittance on an electric field applied to the domain are different at various light polarization directions relative to the disclination lines and, in the absence of an analyzer, are accompanied by interference oscillations. To explain the results obtained, a domain is considered to be a gradient lens with the refractive index variable in the plane perpendicular to the laser beam and the resulting deflecting effect that was collected at the beam path through the liquid crystal layer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interference of nonpolarized light in liquid crystal domains on a polymer surface

Alexander M. Parshin, Alexey V. Barannik, Victor Y. Zyryanov, and Vasily F. Shabanov
J. Opt. Soc. Am. B 36(7) 1845-1849 (2019)

Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light

Georgi B. Hadjichristov, Yordan G. Marinov, and Alexander G. Petrov
Appl. Opt. 50(16) 2326-2333 (2011)

Improvement of performance of liquid crystal microlens with polymer surface modification

Shug-June Hwang, Yi-Xiang Liu, and Glen Andrew Porter
Opt. Express 22(4) 4620-4627 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Blinov, Structure and Properties of Liquid Xrystals (Springer, 2011).
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  3. S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
    [Crossref] [PubMed]
  4. S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
    [Crossref] [PubMed]
  5. A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
    [Crossref]
  6. A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).
  7. O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
    [Crossref]
  8. O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
    [Crossref]
  9. A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
    [Crossref] [PubMed]
  10. A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
    [Crossref] [PubMed]
  11. A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
    [Crossref]
  12. O. D. Lavrentovich and Yu. A. Nastishin, Europhys. Lett. “Defects in degenerate hybrid aligned nematic liquid crystals,” 12, 135–141 (1990).
  13. V. Presnyakov, K. Asatryan, T. Galstian, V. Chigrinov, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref] [PubMed]
  14. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref] [PubMed]
  15. J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
    [Crossref]

2015 (2)

A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
[Crossref]

O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
[Crossref] [PubMed]

2014 (1)

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

2013 (1)

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

2008 (1)

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

2007 (1)

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

2006 (1)

2005 (1)

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

2000 (1)

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

1988 (1)

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

1986 (2)

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
[Crossref]

Asatryan, K.

Barannik, A. V.

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

Bezborodov, V. S.

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

Bunning, J. B.

J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
[Crossref]

Chigrinov, V.

Doane, J. W.

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Faber, T. F.

J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
[Crossref]

Galstian, T.

Grellin, D. A.

J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
[Crossref]

Gunyakov, V. A.

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

Konkolovich, A. V.

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Lapanik, V. I.

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

Lavrentovich, O. D.

O. D. Lavrentovich and Yu. A. Nastishin, Europhys. Lett. “Defects in degenerate hybrid aligned nematic liquid crystals,” 12, 135–141 (1990).

Loiko, V. A.

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Nastishin, Yu. A.

O. D. Lavrentovich and Yu. A. Nastishin, Europhys. Lett. “Defects in degenerate hybrid aligned nematic liquid crystals,” 12, 135–141 (1990).

Nazarov, V. G.

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

Parshin, A. M.

A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
[Crossref]

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

Presnyakov, V.

Presnyakov, V. V.

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Prishchepa, O. O.

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

Reshetnyak, V.

Shabanov, A. V.

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

Shabanov, V. F.

A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
[Crossref]

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Sova, O.

Zumer, S.

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

Žumer, S.

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

Zyryanov, V. Y.

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

Zyryanov, V. Ya.

A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
[Crossref]

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Int. J. Mol. Sci. (2)

A. M. Parshin, V. A. Gunyakov, V. Ya. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on a polycarbonate surface,” Int. J. Mol. Sci. 14(8), 16303–16320 (2013).
[Crossref] [PubMed]

A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15(10), 17838–17851 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. SID (1)

A. V. Barannik, V. F. Shabanov, V. Ya. Zyryanov, V. I. Lapanik, and V. S. Bezborodov, “Interference and ion effects in the electro-optical response of PDNLC” film,” J. SID 13(4), 1–7 (2005).

JETP Lett. (2)

O. O. Prishchepa, A. V. Shabanov, V. Ya. Zyryanov, A. M. Parshin, and V. G. Nazarov, “Friedericksz threshold field in bipolar nematic with strong surface anchoring,” JETP Lett. 84(11), 607–612 (2007).
[Crossref]

A. V. Konkolovich, V. V. Presnyakov, V. Ya. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000).
[Crossref]

Liq. Cryst. (2)

J. B. Bunning, D. A. Grellin, and T. F. Faber, “The effect of molecular biaxiality on the bulk properties of some nematic liquid crystals,” Liq. Cryst. 1(1), 37–51 (1986).
[Crossref]

A. M. Parshin, V. Ya. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42(1), 57–64 (2015).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

O. O. Prishchepa, A. M. Parshin, A. V. Shabanov, and V. Ya. Zyryanov, “Magneto-optical study of Friedericksz threshold in polymer dispersed nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 488(1), 309–316 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. A Gen. Phys. (2)

S. Žumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A Gen. Phys. 34(4), 3373–3386 (1986).
[Crossref] [PubMed]

S. Zumer, “Light scattering from nematic droplets: Anomalous-diffraction approach,” Phys. Rev. A Gen. Phys. 37(10), 4006–4015 (1988).
[Crossref] [PubMed]

Other (3)

L. M. Blinov, Structure and Properties of Liquid Xrystals (Springer, 2011).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

O. D. Lavrentovich and Yu. A. Nastishin, Europhys. Lett. “Defects in degenerate hybrid aligned nematic liquid crystals,” 12, 135–141 (1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup for determining the transmission of light passing through the nematic domain formed by the polycarbonate film.
Fig. 2
Fig. 2 Characteristics of the He-Ne laser and its propagation through LC domains. (a) Distribution of intensity I over the radius in the beam cross section, x is the distance from the beam center along the radius, and w0 and w0.5 are the waists at I = 0 and I = 50% from the maximum I, respectively. (b) Microphotograph of 5CB formed by the PC surface; L is the spot of a beam passing through an individual domain; n0 is a direction of LC flux during the filling process.
Fig. 3
Fig. 3 Regimes of variation in optical transmission T of the 5CB domain formed by the PC surface with time t (on the left) and electric voltage U applied to the domain (on the right): the polarization vector e is parallel (on the top) and perpendicular (in the bottom) to the nematic direction n0. Insets: enlarged portions of the T (U) dependences.
Fig. 4
Fig. 4 LC director field distribution in the domain formed by the PC surface. (a) In the xy plane at the distance z > ξ from the PC film surface. (b) In the A-A cross section in zero external field. (с) In external field E.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ( U )x,y= 2π λ 0 ξ [ n e ( x,y,z ) n o ] dz 2π λ [ n e ( x,y,z ) n o ] ξ,
n e ( x,y,z )= n || n ( n || 2 sin 2 θ( x,y,z )+ n 2 cos 2 θ( x,y,z ) ) 1 2 ,

Metrics