Abstract

In this article, the authors have investigated the properties of the popular native defects in nitrogen-doped ZnO microrod samples grown by the chemical vapor transport method. Excellent crystalline quality has been confirmed in the samples. Optical signatures of zinc interstitials and zinc vacancies have been observed by employing Raman and variable temperature photoluminescence. By tuning the flow rate of oxidant (nitrous oxide) during growth, the concentration of zinc interstitials and vacancies can be modified. When the flow rate of the nitrous oxide is high, the zinc interstitials can be suppressed while the zinc vacancy-related shallow acceptors can be enhanced. These are both beneficial to the realization and further enhancement of p-type conductivity in ZnO material. This study provides a good understanding of the properties of the native point defects in nitrogen-doped ZnO microrods and also offers a simple way to control the defects towards p-type direction.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation on the p-type formation mechanism of nitrogen ion implanted ZnO thin films induced by rapid thermal annealing

Zheng Huang, Haibo Ruan, Hong Zhang, Dongping Shi, Wanjun Li, Guoping Qin, Fang Wu, Liang Fang, and Chunyang Kong
Opt. Mater. Express 9(7) 3098-3108 (2019)

Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Yang Shen, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(4) 1169-1179 (2017)

Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 6(12) 3733-3740 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Manthina and A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications,” Nano-Structures & Nano-Objects 7, 1–11 (2016).
    [Crossref]
  2. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
    [Crossref]
  3. L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B 72(3), 035203 (2005).
    [Crossref]
  4. F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
    [Crossref] [PubMed]
  5. A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
    [Crossref]
  6. A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
    [Crossref]
  7. S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett. 98(4), 045501 (2007).
    [Crossref] [PubMed]
  8. A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
    [Crossref]
  9. H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
    [Crossref]
  10. E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
    [Crossref] [PubMed]
  11. A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
    [Crossref]
  12. L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
    [Crossref]
  13. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
    [Crossref]
  14. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
    [Crossref]
  15. Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
    [Crossref]
  16. F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
    [Crossref]
  17. A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
    [Crossref]
  18. L. G. Wang and A. Zunger, “Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO,” Phys. Rev. Lett. 90(25), 256401 (2003).
    [Crossref] [PubMed]
  19. J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
    [Crossref]
  20. R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
    [Crossref]
  21. S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
    [Crossref] [PubMed]
  22. W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
    [Crossref]
  23. L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
    [Crossref] [PubMed]
  24. F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
    [Crossref]
  25. Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
    [Crossref]
  26. J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
    [Crossref]
  27. T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
    [Crossref]
  28. C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
    [Crossref]
  29. T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
    [Crossref]
  30. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
    [Crossref]
  31. A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
    [Crossref]
  32. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
    [Crossref]
  33. F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
    [Crossref]
  34. F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
    [Crossref]
  35. M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
    [Crossref]
  36. P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
    [Crossref]
  37. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
    [Crossref]
  38. J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977).
    [Crossref]
  39. M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
    [Crossref]
  40. S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
    [Crossref]
  41. W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
    [Crossref]
  42. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
    [Crossref]
  43. A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
    [Crossref]
  44. K. Leutwein and J. Schneider, “Defects in Neutron-irradiated ZnO (I),” Z. Naturforsch. A 26, 1236–1237 (1971).
  45. L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
    [Crossref]
  46. H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
    [Crossref]
  47. M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
    [Crossref]

2016 (1)

V. Manthina and A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications,” Nano-Structures & Nano-Objects 7, 1–11 (2016).
[Crossref]

2015 (3)

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

2013 (4)

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
[Crossref] [PubMed]

2012 (2)

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

2011 (2)

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

2009 (3)

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
[Crossref]

2008 (1)

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

2007 (3)

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett. 98(4), 045501 (2007).
[Crossref] [PubMed]

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

2006 (2)

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

2005 (5)

T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
[Crossref]

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B 72(3), 035203 (2005).
[Crossref]

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

2004 (4)

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

2003 (5)

L. G. Wang and A. Zunger, “Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO,” Phys. Rev. Lett. 90(25), 256401 (2003).
[Crossref] [PubMed]

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

2002 (3)

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
[Crossref]

2000 (1)

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

1999 (1)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

1998 (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

1996 (1)

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

1991 (1)

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

1986 (1)

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

1983 (1)

A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
[Crossref]

1977 (1)

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977).
[Crossref]

1971 (1)

K. Leutwein and J. Schneider, “Defects in Neutron-irradiated ZnO (I),” Z. Naturforsch. A 26, 1236–1237 (1971).

Agrios, A. G.

V. Manthina and A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications,” Nano-Structures & Nano-Objects 7, 1–11 (2016).
[Crossref]

Alves, H. R.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Ashkenov, N.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Awan, S. U.

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

Bai, X. D.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Barnes, T. M.

T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
[Crossref]

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

Battaglin, G.

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

Bertino, M. F.

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

Beyermann, W. P.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Bhatnagar, M.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Boukos, N.

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

Bundesmann, C.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Butz, T.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Cantwell, G.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Chan, W. K.

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

Chandrinou, C.

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

Chang, K. J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Cheah, K. W.

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

Chen, H.

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Chen, M.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Chopra, K. L.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Choy, W. C. H.

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

Cui, Y. T.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Dang, L. S.

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

Djurišic, A. B.

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

Dow, J. D.

A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
[Crossref]

Du, S.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Eason, D. B.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Eisermann, S.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Fallert, J.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Fan, J. C. C.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977).
[Crossref]

Fan, X. W.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Fang, L.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Friedrich, F.

F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
[Crossref]

Fry, C.

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

Galtier, P.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Garcia, J. A.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

Giles, N. C.

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

Gluba, M. A.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
[Crossref]

Goodenough, J. B.

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977).
[Crossref]

Grundmann, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Gu, S. L.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Guo, W.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Haboeck, U.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Hand, S.

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

Haneche, N.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Hasanain, S. K.

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

Hauschild, R.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Hauser, M.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Hemsky, J. W.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Hepting, A.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Hoffmann, A.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Hofmann, D. M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Huang, J.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Huang, R.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Huang, R. F.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Hwang, D. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Jaffari, G. H.

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

Janotti, A.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Jiang, M.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Jones, R. L.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Kaczmarczyk, G.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Kaidashev, E. M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Kalt, H.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Kang, J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Karpensky, N.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

Kaschner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Khan, E. H.

E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
[Crossref] [PubMed]

Kilanski, L.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Kim, H. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Kim, K. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Klingshirn, C.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Kobayashi, A.

A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
[Crossref]

Kong, C. Y.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Kumar, S.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Kwack, H.-S.

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

Lany, S.

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett. 98(4), 045501 (2007).
[Crossref] [PubMed]

Leaf, J.

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

Lee, S. T.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Lee, T. S.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Lee, W. J.

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

Leung, Y. H.

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

Leutwein, K.

K. Leutwein and J. Schneider, “Defects in Neutron-irradiated ZnO (I),” Z. Naturforsch. A 26, 1236–1237 (1971).

Li, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Li, W. J.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Lim, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Limpijumnong, S.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Litton, C. W.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Liu, J. L.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Liu, L.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Liu, Y. C.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Look, D. C.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Lorenz, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Lu, Y. F.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Lu, Y. M.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Lusson, A.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Lyons, J. L.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

Ma, J. G.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Major, S.

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

Mandalapu, L. J.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Manjón, F. J.

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Manthina, V.

V. Manthina and A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications,” Nano-Structures & Nano-Objects 7, 1–11 (2016).
[Crossref]

Mari, B.

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

McCluskey, M. D.

E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
[Crossref] [PubMed]

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Meftah, A.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Meyer, B. K.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Mu, R.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Munoz-Sanjose, V.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

Ng, T. W.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Nickel, N. H.

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
[Crossref]

Oh, J. Y.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Olson, K.

T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
[Crossref]

Oueslati, M.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Park, C. H.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
[Crossref]

Park, S. J.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Park, Y. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Pei, Z. L.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Perez, J. Z.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

Plazaola, F.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

Qin, G. P.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Quaranta, F.

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

Ranki, V.

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

Rauch, C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Reynolds, D. C.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

Romero, A. H.

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Rossi, M.

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

Ruan, H. B.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Ryu, Y. R.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Saarinen, K.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

Sallet, V.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Sankey, O. F.

A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
[Crossref]

Sartel, C.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Schneider, J.

K. Leutwein and J. Schneider, “Defects in Neutron-irradiated ZnO (I),” Z. Naturforsch. A 26, 1236–1237 (1971).

Schubert, M.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Seager, C. H.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Serrano, J.

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

Shan, C. X.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Shen, D. Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Shibata, H.

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

Sizelove, J. R.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Song, J.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Souissi, A.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Spemann, D.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

Strassburg, M.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Sun, C.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Tallant, D. R.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Tang, K.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Tarun, M. C.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Thomsen, C.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Travlos, A.

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

Tuomisto, F.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

Valentini, A.

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

Van de Walle, C. G.

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

Vanheusden, K.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Vilar, C.

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Viogt, J. A.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Vlasenko, L. S.

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B 72(3), 035203 (2005).
[Crossref]

Wagner, M. R.

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

Wang, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, L.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

Wang, L. G.

L. G. Wang and A. Zunger, “Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO,” Phys. Rev. Lett. 90(25), 256401 (2003).
[Crossref] [PubMed]

Wang, N.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Wang, S.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Wang, X.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Warren, W. L.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

Watkins, G. D.

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B 72(3), 035203 (2005).
[Crossref]

Weber, M. H.

E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
[Crossref] [PubMed]

Wei, S. H.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
[Crossref]

Wen, L. S.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

White, H. W.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Wolden, C. A.

T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
[Crossref]

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

Wu, F.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Xiu, F. X.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Xu, J.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Xu, Q.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Xu, S.

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

Yang, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Yang, L. L.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Yang, Z.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Yao, B.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Yao, Z. R.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

Ye, J. D.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Ye, L. J.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Ye, Z. Z.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Yu, Y. H.

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

Zeng, Y. J.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Zeuner, A.

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

Zhang, H.

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

Zhang, J. Y.

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Zhang, P.

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

Zhang, R.

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Zhang, S. B.

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
[Crossref]

Zhang, Y.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

Zhang, Z.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zhao, B. H.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Zhao, D.

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

Zhao, D. T.

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

Zheng, Y. D.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Zhou, H.

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Zhu, L. P.

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

Zhu, S. M.

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Zhu, Z. B.

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

Zubiaga, A.

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

Zunger, A.

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett. 98(4), 045501 (2007).
[Crossref] [PubMed]

L. G. Wang and A. Zunger, “Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO,” Phys. Rev. Lett. 90(25), 256401 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (14)

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett. 81(10), 1830–1832 (2002).
[Crossref]

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Appl. Phys. Lett. 87(15), 152101 (2005).
[Crossref]

J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Why nitrogen cannot lead to p-type conductivity in ZnO,” Appl. Phys. Lett. 95(25), 252105 (2009).
[Crossref]

R. Huang, S. Xu, W. Guo, L. Wang, J. Song, T. W. Ng, J. Huang, S. T. Lee, S. Du, and N. Wang, “Nitrogen deep accepters in ZnO nanowires induced by ammonia plasma,” Appl. Phys. Lett. 99(14), 143112 (2011).
[Crossref]

T. M. Barnes, K. Olson, and C. A. Wolden, “On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide,” Appl. Phys. Lett. 86(11), 112112 (2005).
[Crossref]

A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys. Lett. 80(11), 1909–1911 (2002).
[Crossref]

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Appl. Phys. Lett. 83(10), 1974–1976 (2003).
[Crossref]

F. Friedrich, M. A. Gluba, and N. H. Nickel, “Identification of nitrogen and zinc related vibrational modes in ZnO,” Appl. Phys. Lett. 95(14), 141903 (2009).
[Crossref]

S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,” Appl. Phys. Lett. 49(7), 394–396 (1986).
[Crossref]

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Viogt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996).
[Crossref]

A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett. 84(14), 2635–2637 (2004).
[Crossref]

M. Hauser, A. Hepting, R. Hauschild, H. Zhou, J. Fallert, H. Kalt, and C. Klingshirn, “Absolute external luminescence quantum efficiency of zinc oxide,” Appl. Phys. Lett. 92(21), 211105 (2008).
[Crossref]

Appl. Surf. Sci. (2)

M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158(1-2), 134–140 (2000).
[Crossref]

P. Zhang, C. Y. Kong, W. J. Li, G. P. Qin, Q. Xu, H. Zhang, H. B. Ruan, Y. T. Cui, and L. Fang, “The origin of the ~274 cm−1 additional Raman mode induced by the incorporation of N dopants and a feasible route to achieve p-type ZnO:N thin films,” Appl. Surf. Sci. 327, 154–158 (2015).
[Crossref]

J. Appl. Phys. (8)

J. C. C. Fan and J. B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films,” J. Appl. Phys. 48(8), 3524–3531 (1977).
[Crossref]

F. J. Manjón, B. Mari, J. Serrano, and A. H. Romero, “Silent Raman modes in zinc oxide and related nitrides,” J. Appl. Phys. 97(5), 053516 (2005).
[Crossref]

T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, “A comparison of plasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis by chemical vapor deposition,” J. Appl. Phys. 96(12), 7036–7044 (2004).
[Crossref]

A. Zubiaga, J. A. Garcia, F. Plazaola, F. Tuomisto, K. Saarinen, J. Z. Perez, and V. Munoz-Sanjose, “Correlation between Zn vacancies and photoluminescence emission in ZnO films,” J. Appl. Phys. 99(5), 053516 (2006).
[Crossref]

A. Travlos, N. Boukos, C. Chandrinou, H.-S. Kwack, and L. S. Dang, “Zinc and oxygen vacancies in ZnO nanorods,” J. Appl. Phys. 106(10), 104307 (2009).
[Crossref]

S. U. Awan, S. K. Hasanain, M. F. Bertino, and G. H. Jaffari, “Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li,” J. Appl. Phys. 112(10), 103924 (2012).
[Crossref]

W. J. Li, L. Fang, G. P. Qin, H. B. Ruan, H. Zhang, C. Y. Kong, L. J. Ye, P. Zhang, and F. Wu, “Tunable zinc interstitial related defects in ZnMgO and ZnCdO films,” J. Appl. Phys. 117(14), 145301 (2015).
[Crossref]

L. Wang and N. C. Giles, “Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy,” J. Appl. Phys. 94(2), 973–978 (2003).
[Crossref]

J. Electron. Mater. (1)

L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, and B. H. Zhao, “Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source,” J. Electron. Mater. 36(4), 498–501 (2007).
[Crossref]

J. Lumin. (3)

H. Chen, S. L. Gu, K. Tang, S. M. Zhu, Z. B. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, “Origins of green band emission in high-temperature annealed N-doped ZnO,” J. Lumin. 13(6), 1189–1192 (2011).
[Crossref]

A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M. Oueslati, “Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD,” J. Lumin. 136, 265–269 (2013).
[Crossref]

Z. R. Yao, S. L. Gu, K. Tang, J. D. Ye, Y. Zhang, S. M. Zhu, and Y. D. Zheng, “Zinc vacancy related emission in homoepitaxial N-doped ZnO microrods,” J. Lumin. 161, 293–299 (2015).
[Crossref]

J. Mater. Res. (1)

F. Tuomisto, C. Rauch, M. R. Wagner, A. Hoffmann, S. Eisermann, B. K. Meyer, L. Kilanski, M. C. Tarun, and M. D. McCluskey, “Nitrogen and vacancy clusters in ZnO,” J. Mater. Res. 28(15), 1977–1983 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li-doped ZnO films,” J. Vac. Sci. Technol. A 9(2), 286–289 (1991).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties,” J. Vac. Sci. Technol. B 22(1), 94–98 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Shibata, “Negative thermal quenching curves in photoluminescence of solids,” Jpn. J. Appl. Phys. 37(2), 550–553 (1998).
[Crossref]

Nano-Structures & Nano-Objects (1)

V. Manthina and A. G. Agrios, “Single-pot ZnO nanostructure synthesis by chemical bath deposition and their applications,” Nano-Structures & Nano-Objects 7, 1–11 (2016).
[Crossref]

Phys. Rev. B (6)

L. S. Vlasenko and G. D. Watkins, “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K,” Phys. Rev. B 72(3), 035203 (2005).
[Crossref]

A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B 76(16), 165202 (2007).
[Crossref]

A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO,” Phys. Rev. B 28(2), 946–956 (1983).
[Crossref]

W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO,” Phys. Rev. B 73(2), 024117 (2006).
[Crossref]

C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B 66(7), 073202 (2002).
[Crossref]

M. A. Gluba, N. H. Nickel, and N. Karpensky, “Interstitial zinc clusters in zinc oxide,” Phys. Rev. B 88(24), 245201 (2013).
[Crossref]

Phys. Rev. Lett. (7)

L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, “p-Type conductivity in N-doped ZnO: The role of the NZn-VO complex,” Phys. Rev. Lett. 108(21), 215501 (2012).
[Crossref] [PubMed]

L. G. Wang and A. Zunger, “Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO,” Phys. Rev. Lett. 90(25), 256401 (2003).
[Crossref] [PubMed]

S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett. 98(4), 045501 (2007).
[Crossref] [PubMed]

E. H. Khan, M. H. Weber, and M. D. McCluskey, “Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy,” Phys. Rev. Lett. 111(1), 017401 (2013).
[Crossref] [PubMed]

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, “Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO,” Phys. Rev. Lett. 91(20), 205502 (2003).
[Crossref] [PubMed]

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552–2555 (1999).
[Crossref]

Z. Naturforsch. A (1)

K. Leutwein and J. Schneider, “Defects in Neutron-irradiated ZnO (I),” Z. Naturforsch. A 26, 1236–1237 (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) XRD patterns of the MR samples. (b) The rocking curves around ZnO (0002) diffraction peak of N-doped ZnO MRs.
Fig. 2
Fig. 2 (a) Raman spectra of the MR samples recorded at RT. (b) The intensity ratios of AMs and E2(low) as a function of the flow rates of N2O.
Fig. 3
Fig. 3 XPS lines of samples A and D. (a) O 1s spectra. (b) Zn L3M45M45 auger spectra.
Fig. 4
Fig. 4 EPR spectra of samples A and D. The inset shows the schematic diagram of the measurement setup.
Fig. 5
Fig. 5 TD-PL spectra of sample D in the temperature range of 13 - 160 K. (a) NBE emissions. (b) The energy positions of the NBE peaks as a function of temperature. (c) GB emissions. The inset is the integrated intensity of GB emissions normalized to the value at 13 K as a function of temperature, where the solid line is fitting curve of the experimental results by Eq. (4).
Fig. 6
Fig. 6 (a) PL spectra of the MR samples measured at 9 K. (b) The NBE emissions from 3.34 to 3.39 eV.

Tables (2)

Tables Icon

Table 1 The ZnO (0002) diffraction peak in the XRD patterns of our samples compared with the previous data in literature.

Tables Icon

Table 2 Relative intensities of the three components of O 1s peak and the two components of Zn LMM peak in sample A and D

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E FX (T)= E g (T)60 meV,
E g (T)= E g (0)α T 2 /(T+β),
E eA 0 (T)= E g (T) E A +0.5 k B T,
I(T) I(0) = 1+ C 1 exp( E 1 / k B T) 1+ C 2 exp( E 2 / k B T)+ C 3 exp( E 3 / k B T) ,

Metrics