Abstract

A novel hydrothermal approach for synthesizing CdS quantum dots (QDs) and nano-heterostructured CdS/ZnS QDs has been reported. This innovative approach proved to reproduce nanoparticles with extraordinary electronic and optical properties. The as-synthesized CdS and CdS/ZnS nano-heterostructured QDs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), Transmission electron scanning (TEM), high resolution transmission electron scanning (HR-TEM), X-ray photoelectron scanning (XPS), and photoluminescence (PL) emission spectra. The average particle sizes of CdS and CdS/ZnS QDs as shown by XRD and TEM, were 4~6 nm. The optical band gap of CdS and ZnS/CdS nanoparticles was calculated from Tauc plot using UV-vis spectra. The estimated band gaps are measured to be 2.8 and 3.3 eV for CdS and CdS/ZnS QDs, respectively. The blue shift of the absorption edge compared to that of bulk clearly explained the quantum confinement effect. Such nano-hetrostructures of CdS/ZnS provided enhanced physical properties compared to individual CdS nanoparticles. The photocatalytic activity of the photo-stable CdS/ZnS was found to be superior towards the photodegradation of Methylene Blue, MB, dye than that of CdS QDs under visible light irradiation. The enhanced photodegradation mechanism of the nano-heterostructure was investigated and correlated with the optoelectronic properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Au/ZnS and Ag/ZnS nanoheterostructures as regenerated nanophotocatalysts for photocatalytic degradation of organic dyes

Metwally Madkour and Fakhreia Al Sagheer
Opt. Mater. Express 7(1) 158-169 (2017)

Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO)

M. Q. Wen, T. Xiong, Z. G. Zang, W. Wei, X. S. Tang, and F. Dong
Opt. Express 24(10) 10205-10212 (2016)

Microstructural and optical characterizations of highly stable nanospheres of crystalline CdS via selective approach

A. L. Leal-Cruz, A. Vera-Marquina, D. Berman-Mendoza, C. VillaVelázquez-Mendoza, I. E. Zaldívar-Huerta, L. A. García-Delgado, A. García-Juárez, R. Gómez-Fuentes, and A. G. Rojas-Hernández
Opt. Mater. Express 4(1) 129-141 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Hassan and A. F. Ali, “Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine,” J. Cryst. Growth 310(24), 5252–5258 (2008).
    [Crossref]
  2. S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
    [Crossref] [PubMed]
  3. S. J. Rosenthal and J. R. McBride, “Quantum dots: Putting the squeeze on nanocrystals,” Nat. Nanotechnol. 4(1), 16–17 (2009).
    [Crossref] [PubMed]
  4. H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
    [Crossref]
  5. B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
    [Crossref]
  6. E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).
  7. P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
    [Crossref] [PubMed]
  8. Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
    [Crossref]
  9. A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
    [Crossref]
  10. C.-M. Wei and S.-S. Hou, “Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer,” Colloid Polym. Sci. 285(12), 1343–1349 (2007).
    [Crossref]
  11. I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Adv. Colloid Interface Sci. 110(1-2), 49–74 (2004).
    [Crossref] [PubMed]
  12. R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
    [Crossref]
  13. C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
    [Crossref] [PubMed]
  14. A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
    [Crossref]
  15. M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
    [Crossref]
  16. Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
    [Crossref]
  17. B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
    [Crossref]
  18. M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
    [Crossref]
  19. D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
    [Crossref]
  20. I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
    [Crossref]
  21. N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
    [Crossref]
  22. F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
    [Crossref]
  23. A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
    [Crossref]
  24. N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).
  25. O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
    [Crossref]
  26. Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
    [Crossref] [PubMed]
  27. V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
    [Crossref]
  28. L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
    [Crossref] [PubMed]
  29. J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
    [Crossref] [PubMed]
  30. Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126(44), 14336–14337 (2004).
    [Crossref] [PubMed]
  31. L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
    [Crossref]
  32. Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
    [Crossref]
  33. C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
    [Crossref]
  34. B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
    [Crossref]
  35. S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).
  36. R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
    [Crossref] [PubMed]
  37. M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
    [Crossref] [PubMed]
  38. H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
    [Crossref]
  39. K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
    [Crossref] [PubMed]
  40. E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
    [Crossref] [PubMed]
  41. N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
    [Crossref] [PubMed]
  42. X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
    [Crossref]
  43. Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
    [Crossref]

2015 (4)

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

2014 (5)

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
[Crossref] [PubMed]

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

2013 (4)

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

2012 (2)

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

2011 (5)

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
[Crossref] [PubMed]

2010 (1)

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

2009 (7)

S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
[Crossref] [PubMed]

S. J. Rosenthal and J. R. McBride, “Quantum dots: Putting the squeeze on nanocrystals,” Nat. Nanotechnol. 4(1), 16–17 (2009).
[Crossref] [PubMed]

I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

2008 (3)

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

M. L. Hassan and A. F. Ali, “Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine,” J. Cryst. Growth 310(24), 5252–5258 (2008).
[Crossref]

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

2007 (2)

C.-M. Wei and S.-S. Hou, “Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer,” Colloid Polym. Sci. 285(12), 1343–1349 (2007).
[Crossref]

M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
[Crossref]

2006 (2)

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

2005 (2)

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

2004 (2)

I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Adv. Colloid Interface Sci. 110(1-2), 49–74 (2004).
[Crossref] [PubMed]

Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126(44), 14336–14337 (2004).
[Crossref] [PubMed]

2003 (1)

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

2000 (1)

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

1995 (1)

A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
[Crossref]

1993 (1)

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

Abedini, A.

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Acharya, K. P.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Ali, A. F.

M. L. Hassan and A. F. Ali, “Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine,” J. Cryst. Growth 310(24), 5252–5258 (2008).
[Crossref]

Al-Sagheer, F.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Alves, O. L.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Amiri, O.

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Andrade, J. L.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Andrade, L. H. C.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Asefa, T.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Bahmanrokh, G.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Bahrami, A.

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

Baniasadi, E.

E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).

Barnes, M. D.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Basché, T.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

Bian, L.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Bumajdad, A.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Cao, Y. C.

Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126(44), 14336–14337 (2004).
[Crossref] [PubMed]

Capek, I.

I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Adv. Colloid Interface Sci. 110(1-2), 49–74 (2004).
[Crossref] [PubMed]

Chan, C.-C.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chan, T.-S.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chang, C.-C.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, C.-L.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, D.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Chen, H. M.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, S.-Y.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, T.-M.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Cheng, J.-A.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Cheng, S.-S.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Chenghua, H.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Dai, Y.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Dickert, S.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Diederich, G.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Dincer, I.

E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).

Dong, C.-L.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Elashmawi, I. S.

I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Emadi, H.

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Endrodi, B.

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Erfani, M.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Fan, Y.

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Fernandes, D. M.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Ferreira, J.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Ferreira, L. F. V.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Fujii, N.

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

Fukuyama, T.

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

Gao, P.

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

Gharibshahi, E.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

Ghazal, B.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Girotto, E. M.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Gosavi, S. W.

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

Guo, Z.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Hakeem, N. A.

I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Han, X.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Hassan, M. L.

M. L. Hassan and A. F. Ali, “Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine,” J. Cryst. Growth 310(24), 5252–5258 (2008).
[Crossref]

He, R.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

He, W.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Hechenleitner, A. A. W.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Hornok, V.

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Hou, L.-R.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Hou, S.-S.

C.-M. Wei and S.-S. Hou, “Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer,” Colloid Polym. Sci. 285(12), 1343–1349 (2007).
[Crossref]

Hsu, Y.-Y.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Huang, B.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Huang, C.-P.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Hughes, R. W.

S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
[Crossref] [PubMed]

Hung, S.-F.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Huo, P.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Hussein, M. Z.

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

Imboden, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Janáky, C.

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Jancar, B.

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

Jia, H.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Jinghe, W.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Kalele, S.

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

Khnayzer, R. S.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kinder, E.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kirsanova, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Klinkova, A.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kolb, U.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

Kolesnik, E. E.

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Kudlash, A. N.

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Kukhta, A. V.

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Kulkarni, S. K

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

Laskar, I. R.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Lesnikovich, A. I.

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Li, C.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Li, G.-D.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Li, H.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Li, J.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

Lim, Y.-F.

J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
[Crossref] [PubMed]

Lima, M. K.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Lima, S. M.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Liu, H.-W.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Liu, J.

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

Liu, X.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Liu, Y.

C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
[Crossref] [PubMed]

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Logar, M.

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

Luo, L.-Y.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Ma, C.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Madkour, M.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Mahmood Mat Yunus, W.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

Maia, C. G.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Manzoor, K.

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
[Crossref]

McBride, J. R.

S. J. Rosenthal and J. R. McBride, “Quantum dots: Putting the squeeze on nanocrystals,” Nat. Nanotechnol. 4(1), 16–17 (2009).
[Crossref] [PubMed]

Mews, A.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

Moreira, J. C.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Mostafa Hosseinpour-Mashkani, S. S.

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Mu, Z.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Nandwana, V.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Naterer, G. F.

E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).

Navaseri, M.

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

Navasery, M.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Ng, W.

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

Nosaka, Y.

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

O’Connor, T.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Ohta, N.

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

Oliveira, A. S.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Pan, J.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Pattabi, M.

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
[Crossref]

Pavesi, T.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Peng, Y.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Pineda, E. A. G.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Ping, Z.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Qian, X.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Qin, X.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Rad, M. M.

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Radovanovic, E.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Ramakrishna, K.

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

Rauchfuss, T. B.

A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
[Crossref]

Recnik, A.

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

Reynolds, P. A.

S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
[Crossref] [PubMed]

Rezaee, K.

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

Romano, R.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Rosenthal, S. J.

S. J. Rosenthal and J. R. McBride, “Quantum dots: Putting the squeeze on nanocrystals,” Nat. Nanotechnol. 4(1), 16–17 (2009).
[Crossref] [PubMed]

Rotello, V. M.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Roth, D.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Sabet, M.

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Saggioro, E. M.

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Saion, E.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Santos, M. J. L.

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

Saraswathi Amma, B.

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
[Crossref]

Schoonen, M. A. A.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Selim, M. S.

I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Shao, C.

C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
[Crossref] [PubMed]

Shen, Y.

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

Shi, W.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Silva, M. F.

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

Soltani, N.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Stebbing, S. R.

S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
[Crossref] [PubMed]

Su, C.

C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
[Crossref] [PubMed]

Su, X.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Subramani, C.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Suen, N.-T.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Sun, D. D.

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

Suo, B.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Suvorov, D.

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

Tang, Y.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Tuominen, M. T.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Urban, J

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

Varga, A.

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Vaziri, P.

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

Verma, A. K.

A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
[Crossref]

Visy, C.

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

Vorobyova, S. A.

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Wamer, W. G.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Wang, A.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Wang, D.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Wang, H.-R.

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Wang, J.

J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
[Crossref] [PubMed]

Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126(44), 14336–14337 (2004).
[Crossref] [PubMed]

Wang, L.

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Wang, P.-P.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Wang, X.

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

Wei, C.-M.

C.-M. Wei and S.-S. Hou, “Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer,” Colloid Polym. Sci. 285(12), 1343–1349 (2007).
[Crossref]

Wei, H.

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Wei Ho, G.

J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
[Crossref] [PubMed]

Wilson, S. R.

A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
[Crossref]

Wu, J.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Xi, H.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Xiang, Y.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Xie, A.

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

Xie, R.

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

xinqiang, W.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Xu, C.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Xu, Y.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Yan, Y.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Yang, B.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Yang, L.

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

Yeh, Y.-C.

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

Yin, J.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Yin, J.-J.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Yu, L.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Yuan, C.-Z.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Zamkov, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Zare, M. R.

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

Zhan, J.

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Zhang, B.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

Zhang, S.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Zhang, X.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Zhao, J.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

Zheng, Z.

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

Zhifeng, L.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Zhou, M.

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Zhou, Z.

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Zhu, Z.

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Zou, X.

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Adv. Colloid Interface Sci. (2)

S. R. Stebbing, R. W. Hughes, and P. A. Reynolds, “Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles,” Adv. Colloid Interface Sci. 147-148, 272–280 (2009).
[Crossref] [PubMed]

I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Adv. Colloid Interface Sci. 110(1-2), 49–74 (2004).
[Crossref] [PubMed]

Am. Mineral. (1)

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Appl. Catal., A (1)

E. Baniasadi, I. Dincer, and G. F. Naterer, “Hybrid photocatalytic water splitting for an expanded range of the solar spectrum with cadmium sulfide and zinc sulfide catalysts,” Appl. Catal., A.  455, 25–31 (2013).

Appl. Surf. Sci. (1)

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Chalcogenide Lett. (1)

N. Soltani, E. Saion, M. Erfani, A. Bahrami, M. Navaseri, K. Rezaee, and M. Z. Hussein, “Facile Synthesis of ZnS/CdS and CdS/ZnS core-shell nanoparticles using microwave irridiation and their optical properties,” Chalcogenide Lett. 9, 379–387 (2012).

Colloid Polym. Sci. (1)

C.-M. Wei and S.-S. Hou, “Preparation and optical properties of blue-emitting colloidal CdS nanocrystallines by the solvothermal process using poly (ethylene oxide) as the stabilizer,” Colloid Polym. Sci. 285(12), 1343–1349 (2007).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

R. He, X. Qian, J. Yin, H. Xi, L. Bian, and Z. Zhu, “Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation,” ‎,” Colloids Surf. A Physicochem. Eng. Asp. 220(1-3), 151–157 (2003).
[Crossref]

Curr. Sci. (1)

S. Kalele, S. W. Gosavi, J Urban, and S. K Kulkarni, “Nanoshell particles: synthesis, properties and applications ‎,” Curr. Sci. 91, 1038–1052 (2006).

Inorg. Chem. (1)

A. K. Verma, T. B. Rauchfuss, and S. R. Wilson, “Donor Solvent Mediated Reactions of Elemental Zinc and Sulfur, sans Explosion,” Inorg. Chem. 34(11), 3072–3078 (1995).
[Crossref]

Int. J. Mol. Sci. (1)

N. Soltani, E. Saion, M. Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, “Visible light-induced degradation of methylene blue in the presence of photocatalytic ZnS and CdS nanoparticles,” Int. J. Mol. Sci. 13(12), 12242–12258 (2012).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

R. Xie, U. Kolb, J. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc. 127(20), 7480–7488 (2005).
[Crossref] [PubMed]

Y. C. Cao and J. Wang, “One-pot synthesis of high-quality zinc-blende CdS nanocrystals,” J. Am. Chem. Soc. 126(44), 14336–14337 (2004).
[Crossref] [PubMed]

J. Colloid Interface Sci. (2)

C. Su, C. Shao, and Y. Liu, “Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light,” J. Colloid Interface Sci. 359(1), 220–227 (2011).
[Crossref] [PubMed]

Y. Nosaka, N. Ohta, T. Fukuyama, and N. Fujii, “Size Control of Ultrasmall CdS Particles in Aqueous Solution by Using Various Thiols,” J. Colloid Interface Sci. 155(1), 23–29 (1993).
[Crossref]

J. Cryst. Growth (1)

M. L. Hassan and A. F. Ali, “Synthesis of nanostructured cadmium and zinc sulfides in aqueous solutions of hyperbranched polyethyleneimine,” J. Cryst. Growth 310(24), 5252–5258 (2008).
[Crossref]

J. Hazard. Mater. (1)

P. Gao, J. Liu, D. D. Sun, and W. Ng, “Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation,” J. Hazard. Mater. 250-251, 412–420 (2013).
[Crossref] [PubMed]

J. Mater. Chem. (1)

V. Nandwana, C. Subramani, Y.-C. Yeh, B. Yang, S. Dickert, M. D. Barnes, M. T. Tuominen, and V. M. Rotello, “Direct patterning of quantum dot nanostructuresviaelectron beam lithography,” J. Mater. Chem. 21(42), 16859–16862 (2011).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

X. Zou, P.-P. Wang, C. Li, J. Zhao, D. Wang, T. Asefa, and G.-D. Li, “One-pot cation exchange synthesis of 1D porous CdS/ZnO heterostructures for visible-light-driven H2 evolution,” ‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4682–4689 (2014).
[Crossref]

J. Mol. Catal. Chem. (1)

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

J. Phys. Chem. C (2)

A. Varga, B. Endrődi, V. Hornok, C. Visy, and C. Janáky, “Controlled Photocatalytic Deposition of CdS Nanoparticles on Poly(3-hexylthiophene) Nanofibers: A Versatile Approach To Obtain Organic/Inorganic Hybrid Semiconductor Assemblies,” J. Phys. Chem. C 119(50), 28020–28027 (2015).
[Crossref]

H. Jia, W. He, W. G. Wamer, X. Han, B. Zhang, S. Zhang, Z. Zheng, Y. Xiang, and J.-J. Yin, “Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag2S Micro-Nano Structures,” J. Phys. Chem. C 118(37), 21447–21456 (2014).
[Crossref]

J. Phys. Chem. Solids (1)

Z. Ping, L. Zhifeng, W. xinqiang, Z. Mu, H. Chenghua, Z. Zhou, and W. Jinghe, “First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure,” J. Phys. Chem. Solids 75(5), 662–669 (2014).
[Crossref]

Mater. Chem. Phys. (4)

B. Saraswathi Amma, K. Manzoor, K. Ramakrishna, and M. Pattabi, “Synthesis and optical properties of CdS/ZnS coreshell nanoparticles,” Mater. Chem. Phys. 112(3), 789–792 (2008).
[Crossref]

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

B. Zhang, Y. Shen, A. Xie, L. Yang, and X. Wang, “Shape controlled synthesis of CdS nanostructures in tungstosilicate acid solution by a novel approach,” Mater. Chem. Phys. 116(2-3), 392–399 (2009).
[Crossref]

I. S. Elashmawi, N. A. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Mater. Res. Bull. (1)

M. Pattabi, B. Saraswathi Amma, and K. Manzoor, “Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix,” Mater. Res. Bull. 42(5), 828–835 (2007).
[Crossref]

Molecules (1)

E. M. Saggioro, A. S. Oliveira, T. Pavesi, C. G. Maia, L. F. V. Ferreira, and J. C. Moreira, “Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes,” Molecules 16(12), 10370–10386 (2011).
[Crossref] [PubMed]

Nano Lett. (1)

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Nanoscale (1)

J. Wang, Y.-F. Lim, and G. Wei Ho, “Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution,” Nanoscale 6(16), 9673–9680 (2014).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

L. Wang, H. Wei, Y. Fan, X. Liu, and J. Zhan, “Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites,” Nanoscale Res. Lett. 4(6), 558–564 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

M. Logar, B. Jancar, A. Recnik, and D. Suvorov, “Controlled synthesis of pure and doped ZnS nanoparticles in weak polyion assemblies: growth characteristics and fluorescence properties,” Nanotechnology 20(27), 275601 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. J. Rosenthal and J. R. McBride, “Quantum dots: Putting the squeeze on nanocrystals,” Nat. Nanotechnol. 4(1), 16–17 (2009).
[Crossref] [PubMed]

New J. Chem. (1)

Y. Tang, X. Liu, C. Ma, M. Zhou, P. Huo, L. Yu, J. Pan, W. Shi, and Y. Yan, “Enhanced photocatalytic degradation of tetracycline antibiotics by reduced graphene oxide-CdS/ZnS heterostructure photocatalysts,” New J. Chem. 39(7), 5150–5160 (2015).
[Crossref]

Opt. Mater. (1)

A. N. Kudlash, S. A. Vorobyova, A. I. Lesnikovich, A. V. Kukhta, and E. E. Kolesnik, “Optical properties of cadmium sulfide colloidal dispersions prepared by interphase synthesis,” Opt. Mater. 30(8), 1304–1309 (2008).
[Crossref]

Polym. Degrad. Stabil. (1)

D. M. Fernandes, J. L. Andrade, M. K. Lima, M. F. Silva, L. H. C. Andrade, S. M. Lima, A. A. W. Hechenleitner, and E. A. G. Pineda, “Thermal and photochemical effects on the structure, morphology, thermal and optical properties of PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O nanocomposite films,” Polym. Degrad. Stabil. 98(9), 1862–1868 (2013).
[Crossref]

RSC Advances (1)

O. Amiri, H. Emadi, S. S. Mostafa Hosseinpour-Mashkani, M. Sabet, and M. M. Rad, “Simple and surfactant free synthesis and characterization of CdS/ZnS core-shell nanoparticles and their application in the removal of heavy metals from aqueous solution,” RSC Advances 4(21), 10990–10996 (2014).
[Crossref]

Sci. Adv. Mater. (1)

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic characteristics of ZnS quantum dots: simulation and experimental investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Sol. Energy (1)

N. Soltani, E. Saion, W. Mahmood Mat Yunus, M. Navasery, G. Bahmanrokh, M. Erfani, M. R. Zare, and E. Gharibshahi, “Photocatalytic degradation of methylene blue under visible light using PVP-capped ZnS and CdS nanoparticles,” Sol. Energy 97, 147–154 (2013).
[Crossref]

Thin Solid Films (2)

M. J. L. Santos, J. Ferreira, E. Radovanovic, R. Romano, O. L. Alves, and E. M. Girotto, “Enhancement of the photoelectrochemical response of poly(terthiophenes) by CdS(ZnS) core-shell nanoparticles,” Thin Solid Films 517(18), 5523–5529 (2009).
[Crossref]

H.-W. Liu, I. R. Laskar, C.-P. Huang, J.-A. Cheng, S.-S. Cheng, L.-Y. Luo, H.-R. Wang, and T.-M. Chen, “Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles,” Thin Solid Films 489(1-2), 296–302 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD patterns of CdS and CdS/ZnS Nano-heterostructured nanoparticles.
Fig. 2
Fig. 2 (a) TEM of CdS QDs; (b) TEM of CdS/ZnS QDs; (c) HRTEM of CdS QDs and (d) HRTEM CdS/ZnS nano-heterostructured nanoparticles.
Fig. 3
Fig. 3 XPS patterns of a) S 2p, b) Cd 3d and c) Zn 2p for CdS QDs and CdS/ZnS Nano-heterostructure.
Fig. 4
Fig. 4 a) UV/Vis spectrum; b) PL spectra of the CdS QDs and CdS/ZnS heterostructured nanoparticles.
Fig. 5
Fig. 5 Pseudo-first-order plot for the kinetics of photodegradation of MB dye in the presence of CdS QDs and CdS/ZnS heterostructured nanoparticles under visible light irradiation.
Fig. 6
Fig. 6 Plots of ln Co/C versus time for photodegradation of MB during 6 cycles at constant time = 80 min.
Fig. 7
Fig. 7 visible light charge transfer mechanism of CdS/ZnS heterostructure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D = 0.89λ/ ( β cosθ )
( αhυ ) 1/m = k ( hυ E g )
E g * = E g bulk + h ¯ 2 π 2 2 r 2 ( 1 m e * + 1 m h * ) 1.8 e 2 4πε ε 0 r 0.124 e 4 h ¯ 2 (4πε ε 0 ) 2 ( 1 m e * + 1 m h * ) 1
ln( C 0 /C )=kt,

Metrics