Abstract

Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)] (F8BT) and 4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were drop-casted over screen-printed AC powder electroluminescent (ACPEL) devices to tune the emission color from blue ZnS phosphors. Yellow and red emissions with peak wavelengths of 548 nm and 630 nm were obtained for the hybrid ACPEL devices. By changing the mass ratio and concentrations of the F8BT and DCJTB mixture, colors ranging from green to pink were achieved. White color with the Commission Internationale de l'Éclairage (CIE) coordinates of (0.313, 0.312) was obtained. In electroluminescence (EL) and white light aging studies lasting 114.25 hours, F8BT was found to be more stable than DCJTB, which degraded fast under both conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Opto-impedance spectroscopy and equivalent circuit analyses of AC powder electroluminescent devices

Shuai Zhang, Chuan Seng Tan, Terence Kin Shun Wong, Haibin Su, and Ronnie Jin Wah Teo
Opt. Express 25(12) A454-A466 (2017)

Study of color-conversion-materials in chromatic-stability white organic light-emitting diodes

C. Li, H. Kimura, T. Saito, K. Sakurai, B. Wei, M. Ichikawa, and Y. Taniguchi
Opt. Express 15(22) 14422-14430 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Nisato, D. Lupo, and S. Ganz, Organic and Printed Electronics: Fundamentals and Applications (CRC Press, 2016).
  2. T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
    [Crossref]
  3. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
    [Crossref]
  4. M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
    [Crossref]
  5. Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
    [Crossref]
  6. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. 39(5-6), 143–222 (2002).
    [Crossref]
  7. A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
    [Crossref]
  8. C. J. Winscom, R. Withnall, and J. Silver, “Thick Film AC Electroluminescence,” in Handbook of Digital Imaging, M. Kriss ed. (John Wiley & Sons, Ltd, 2015).
  9. M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
    [Crossref]
  10. H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
    [Crossref]
  11. J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
    [Crossref]
  12. B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
    [Crossref]
  13. S. H. Chung, S. Song, K. J. Yang, S. M. Jeong, and B. Choi, “Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite,” Opt. Mater. Express 4(9), 1824–1832 (2014).
    [Crossref]
  14. J. Y. Kim, “High performance of the organic–inorganic powder electroluminescence device with high color-rendering capability using the multilayer,” Opt. Commun. 321(1), 86–89 (2014).
    [Crossref]
  15. H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
    [Crossref]
  16. C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
    [Crossref] [PubMed]
  17. S. Nigel and H. H. Paul, “Zinc sulphide,” in Handbook of Electroluminescent Materials (Taylor & Francis, 2004).
  18. J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
    [Crossref] [PubMed]
  19. J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
    [Crossref]
  20. A. G. Fischer, “Electroluminescent lines in ZnS powder particles. I. Embedding media and basic observations,” J. Electrochem. Soc. 109(11), 1043–1049 (1962).
    [Crossref]
  21. A. G. Fischer, “Electroluminescent lines in ZnS powder particles. II. Models and comparison with experience,” J. Electrochem. Soc. 110(7), 733–748 (1963).
    [Crossref]
  22. C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
    [Crossref]

2015 (3)

T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
[Crossref]

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

2014 (2)

J. Y. Kim, “High performance of the organic–inorganic powder electroluminescence device with high color-rendering capability using the multilayer,” Opt. Commun. 321(1), 86–89 (2014).
[Crossref]

S. H. Chung, S. Song, K. J. Yang, S. M. Jeong, and B. Choi, “Luminance enhancement of electroluminescent devices using highly dielectric UV-curable polymer and oxide nanoparticle composite,” Opt. Mater. Express 4(9), 1824–1832 (2014).
[Crossref]

2011 (2)

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

2010 (2)

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

2008 (2)

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

2007 (1)

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

2005 (1)

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

2003 (1)

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

2002 (1)

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. 39(5-6), 143–222 (2002).
[Crossref]

1999 (1)

C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
[Crossref]

1990 (1)

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

1963 (1)

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. II. Models and comparison with experience,” J. Electrochem. Soc. 110(7), 733–748 (1963).
[Crossref]

1962 (1)

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. I. Embedding media and basic observations,” J. Electrochem. Soc. 109(11), 1043–1049 (1962).
[Crossref]

Ahn, J. T.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Alehdaghi, H.

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

Bradley, D.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Bredol, M.

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

Bridges, F.

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Brown, A.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Burns, P.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Burroughes, J.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Carter, S. A.

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Chen, C. H.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. 39(5-6), 143–222 (2002).
[Crossref]

Cho, H.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Choi, B.

Chung, S. H.

Chung, W. J.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Dieckhoff, H. S.

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

Fischer, A. G.

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. II. Models and comparison with experience,” J. Electrochem. Soc. 110(7), 733–748 (1963).
[Crossref]

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. I. Embedding media and basic observations,” J. Electrochem. Soc. 109(11), 1043–1049 (1962).
[Crossref]

Fornalik, J. E.

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

Forrest, S. R.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Friend, R.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Gerenser, L. J.

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

Ghosh, A. P.

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

Han, S. D.

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Han, T. H.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Holmes, A.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Hung, L. S.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. 39(5-6), 143–222 (2002).
[Crossref]

Ichino, K.

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Irajizad, A.

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

Jarman, C. M.

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

Jeon, D. Y.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Jeong, E.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Jeong, S. H.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Jeong, S. M.

Jiang, Y.

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Kaltenbrunner, M.

T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
[Crossref]

Kim, J. S.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Kim, J. Y.

J. Y. Kim, “High performance of the organic–inorganic powder electroluminescence device with high color-rendering capability using the multilayer,” Opt. Commun. 321(1), 86–89 (2014).
[Crossref]

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Kim, S. O.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Kim, Y. H.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Kobayashi, H.

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Kunimoto, T.

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Kwon, A. K.

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Lee, B. R.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Lee, H. J.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Lee, J. M.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Lee, S. H.

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Lee, T. W.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Lee, Y.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Mackay, K.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Marandi, M.

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

Marks, R.

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Neugebauer, J.

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Ohmi, K.

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Park, B. J.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Park, H. L.

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Park, J. H.

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

Park, J. S.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Park, M. H.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Rong, C. J.

C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
[Crossref]

Ruhlen, L.

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Seo, H. K.

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

Seo, H. S.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Someya, T.

T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
[Crossref]

Song, J. H.

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

Song, M. H.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Song, S.

Stanley, J.

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Sun, Y.

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Taghavinia, N.

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

Tomiji, W.

C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
[Crossref]

Van de Walle, C. G.

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Woo, H. Y.

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

Yan, W. X.

C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
[Crossref]

Yang, K. J.

Yokota, T.

T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. P. Ghosh, L. J. Gerenser, C. M. Jarman, and J. E. Fornalik, “Thin-film encapsulation of organic light-emitting devices,” Appl. Phys. Lett. 86(22), 223503 (2005).
[Crossref]

J. S. Park, B. R. Lee, E. Jeong, H. J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y. Woo, S. O. Kim, and M. H. Song, “High performance polymer light-emitting diodes with N-type metal oxide/conjugated polyelectrolyte hybrid charge transport layers,” Appl. Phys. Lett. 99(16), 163305 (2011).
[Crossref]

J. Appl. Polym. Sci. (1)

C. J. Rong, W. X. Yan, and W. Tomiji, “Wettability of poly(ethylene terephthalate) film treated with low-temperature plasma and their surface analysis by ESCA,” J. Appl. Polym. Sci. 72(10), 1327–1333 (1999).
[Crossref]

J. Electrochem. Soc. (2)

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. I. Embedding media and basic observations,” J. Electrochem. Soc. 109(11), 1043–1049 (1962).
[Crossref]

A. G. Fischer, “Electroluminescent lines in ZnS powder particles. II. Models and comparison with experience,” J. Electrochem. Soc. 110(7), 733–748 (1963).
[Crossref]

J. Lumin. (1)

J. H. Park, S. H. Lee, J. S. Kim, A. K. Kwon, H. L. Park, and S. D. Han, “White-electroluminescent device with ZnS: Mn, Cu, Cl phosphor,” J. Lumin. 126(2), 566–570 (2007).
[Crossref]

J. Mater. Res. (1)

B. J. Park, H. S. Seo, J. T. Ahn, J. H. Song, W. J. Chung, and D. Y. Jeon, “An investigation on photoluminescence and AC powder electroluminescence of ZnS:Cu,Cl,Mn,Te phosphor,” J. Mater. Res. 26(18), 2394–2399 (2011).
[Crossref]

J. Photon. Energy. (1)

M. H. Park, T. H. Han, Y. H. Kim, S. H. Jeong, Y. Lee, H. K. Seo, H. Cho, and T. W. Lee, “Flexible organic light-emitting diodes for solid-state lighting,” J. Photon. Energy. 5(1), 053599 (2015).
[Crossref]

J. Phys. Condens. Matter (1)

J. Stanley, Y. Jiang, F. Bridges, S. A. Carter, and L. Ruhlen, “Degradation and rejuvenation studies of AC electroluminescent ZnS:Cu,Cl phosphors,” J. Phys. Condens. Matter 22(5), 055301 (2010).
[Crossref] [PubMed]

Mater. Sci. Eng. (1)

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. 39(5-6), 143–222 (2002).
[Crossref]

Materials (Basel) (1)

M. Bredol and H. S. Dieckhoff, “Materials for powder-based AC-electroluminescence,” Materials (Basel) 3(2), 1353–1374 (2010).
[Crossref]

MRS Bull. (1)

T. Someya, M. Kaltenbrunner, and T. Yokota, “Ultraflexible organic electronics,” MRS Bull. 40(12), 1130–1137 (2015).
[Crossref]

Nat. Photonics (1)

Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nat. Photonics 2(8), 483–487 (2008).
[Crossref]

Nature (2)

J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators and solutions,” Nature 423(6940), 626–628 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Y. Kim, “High performance of the organic–inorganic powder electroluminescence device with high color-rendering capability using the multilayer,” Opt. Commun. 321(1), 86–89 (2014).
[Crossref]

Opt. Mater. Express (1)

Org. Electron. (1)

H. Alehdaghi, M. Marandi, A. Irajizad, and N. Taghavinia, “Influence of cathode roughness on the performance of F8BT based organic–inorganic light emitting diodes,” Org. Electron. 16(1), 87–94 (2015).
[Crossref]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

H. Kobayashi, K. Ohmi, K. Ichino, and T. Kunimoto, “Research on inorganic electroluminescence – present status,” Phys. Status Solidi., A Appl. Mater. Sci. 205(1), 11–14 (2008).
[Crossref]

Other (3)

S. Nigel and H. H. Paul, “Zinc sulphide,” in Handbook of Electroluminescent Materials (Taylor & Francis, 2004).

G. Nisato, D. Lupo, and S. Ganz, Organic and Printed Electronics: Fundamentals and Applications (CRC Press, 2016).

C. J. Winscom, R. Withnall, and J. Silver, “Thick Film AC Electroluminescence,” in Handbook of Digital Imaging, M. Kriss ed. (John Wiley & Sons, Ltd, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Structures of (a) forward and (b) reversed hybrid ACPEL devices with a layer of organic dye.
Fig. 2
Fig. 2 (a) PL emission and absorbance spectra of F8BT-CHCl3 solution and dried F8BT-PET film; (b) EL spectra of forward and reversed blue ACPEL devices with and without a layer of F8BT operated at 110 V and 400 Hz. Insets in (b): dark field images of forward and reversed ACPEL devices with a layer of F8BT operated at 110 V and 400 Hz. The scale bars each correspond to 100μm.
Fig. 3
Fig. 3 Emission mechanism in ACPEL devices and downshifting mechanism of the hybrid devices. G-Cu: copper in ZnS contributing to green emission. B-Cu: copper in ZnS contributing to blue emission.
Fig. 4
Fig. 4 (a) CIE operated at 110 V and 100, 400, 800, 1200, 1600, 2000 Hz and (b) luminance as function of frequency operated at 110 V for forward and reversed blue ACPEL devices with and without a layer of F8BT.
Fig. 5
Fig. 5 (a) PL emission and absorbance spectra of DCJTB-CHCl3 solution and DCJTB-PET film; (b) EL spectra of forward and reversed hybrid ACPEL devices with a layer of DCJTB operated at 110 V and 400 Hz. Insets in (b): dark field images of forward and reversed ACPEL devices with a layer of DCJTB operated at 110 V and 400 Hz. The scale bars each correspond to 200μm.
Fig. 6
Fig. 6 (a) CIE operated at 110 V and 100, 400, 800, 1200, 1600, 2000 Hz and (b) luminance as function of frequency operated at 110V for forward and reversed ACPEL devices with and without a layer of DCJTB.
Fig. 7
Fig. 7 (a) EL spectra at 110 V and 400 Hz, (b) CIE at 110V and 100, 400, 800, 1200, 1600, 2000 Hz and (c) luminance as a function of frequency for the reversed hybrid ACPEL devices with a layer of F8BT and DCJTB mixture with the mass ratios of 9:1, 7:1, 5:1, 4:1, and 3:1.
Fig. 8
Fig. 8 (a) EL spectra operated at 110 V and 400 Hz, (b) CIE operated at 110 V and 100, 400, 800, 1200, 1600, 2000 Hz and (c) luminance as a function of frequency at 110 V for reversed hybrid ACPEL devices with a layer of F8BT and DCJTB mixture with final concentrations of 2.40, 1.92, 1.60 and 1.20 mg/mL. The F8BT:DCJTB mass ratio is 3:1 for all samples.
Fig. 9
Fig. 9 (a) EL spectra and (b) luminance change of the hybrid ACPEL devices with time under white light aging. The F8BT:DCJTB mass ratio is 9:1 for all samples.
Fig. 10
Fig. 10 (a) EL spectra and (b) luminance change with time under EL aging for the hybrid ACPEL devices with the operating voltage of 110 V and 400 Hz. The F8BT:DCJTB mass ratio is 9:1 for all samples.
Fig. 11
Fig. 11 Chemical structure of (a) F8BT and (b) DCJTB.
Fig. 12
Fig. 12 PL emission spectra of uncured and cured F8BT and DCJTB in resin.
Fig. 13
Fig. 13 Transmittance of ITO-coated PET and PEDOT:PSS.

Tables (1)

Tables Icon

Table 1 Solution concentrations for the drop casting process

Metrics