Abstract

Colloidal azopolymer nanospheres assembled on a glass substrate were exposed to a single collimated laser beam. The combination of photo-fluidic elongation of the spherical colloids and light induced self-organization of the azopolymer film allows the quasi-instantaneous growth of a large amplitude surface relief grating. Pre-structuration of the sample with the nanosphere assembly supports faster creation of the spontaneous pattern. Confinement into the nanospheres provides exceptionally large modulation amplitude of the spontaneous relief. The method is amenable to any kind of photoactive azo-materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoinduction of spontaneous surface relief gratings on Azo DR1 glass

Leila Mazaheri, Sanyasi Rao Bobbara, Olivier Lebel, and Jean-Michel Nunzi
Opt. Lett. 41(13) 2958-2961 (2016)

Spontaneous photoinduced patterning of azo-dye polymer films: the facts

Christophe Hubert, Céline Fiorini-Debuisschert, Licinio Rocha, Paul Raimond, and Jean-Michel Nunzi
J. Opt. Soc. Am. B 24(8) 1839-1846 (2007)

Efficient single-beam light manipulation of 3D microstructures in azobenzene-containing materials

Yuri Gritsai, Leonid M. Goldenberg, and Joachim Stumpe
Opt. Express 19(19) 18687-18695 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
    [Crossref]
  2. T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
    [Crossref] [PubMed]
  3. R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
    [Crossref] [PubMed]
  4. K. G. Yager and C. J. Barrett, “Photomechanical surface patterning in azo-polymer materials,” Macromol. 39(26), 9320–9326 (2006).
    [Crossref]
  5. M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
    [Crossref] [PubMed]
  6. P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
    [Crossref] [PubMed]
  7. S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
    [Crossref] [PubMed]
  8. R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
    [Crossref]
  9. R. Barillé, D. G. Pérez, Y. Morille, S. Zielińska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38(7), 1128–1130 (2013).
    [Crossref] [PubMed]
  10. R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
    [Crossref]
  11. X. Z. Ye and L. M. Qi, “Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas,” Sci. China Chem. 57(1), 58–69 (2014).
    [Crossref]
  12. L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
    [Crossref]
  13. B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).
  14. Z. Lu and M. Zhou, “Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process,” J. Colloid Interface Sci. 361(2), 429–435 (2011).
    [Crossref] [PubMed]
  15. S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
    [Crossref] [PubMed]
  16. Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
    [Crossref]
  17. T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
    [Crossref]
  18. H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
    [Crossref]
  19. P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
    [Crossref]
  20. M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
    [Crossref]
  21. A. E. Siegman and P. M. Fauchet, “Stimulated wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
    [Crossref]
  22. M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
    [Crossref] [PubMed]
  23. V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
    [Crossref] [PubMed]
  24. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5(9), 1427–1443 (1988).
    [Crossref]
  25. D. Guo, J. Li, G. Xie, Y. Wang, and J. Lao, “Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis,” Langmuir B, 7206–7212 (2014).
    [Crossref]
  26. Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
    [Crossref]

2014 (2)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

X. Z. Ye and L. M. Qi, “Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas,” Sci. China Chem. 57(1), 58–69 (2014).
[Crossref]

2013 (1)

2012 (3)

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

2011 (2)

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Z. Lu and M. Zhou, “Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process,” J. Colloid Interface Sci. 361(2), 429–435 (2011).
[Crossref] [PubMed]

2010 (4)

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
[Crossref] [PubMed]

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

2009 (3)

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
[Crossref] [PubMed]

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

2006 (2)

K. G. Yager and C. J. Barrett, “Photomechanical surface patterning in azo-polymer materials,” Macromol. 39(26), 9320–9326 (2006).
[Crossref]

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

2005 (2)

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

2004 (2)

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

2001 (1)

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

1998 (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
[Crossref]

1988 (1)

1986 (1)

A. E. Siegman and P. M. Fauchet, “Stimulated wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[Crossref]

Ahmadi-Kandjani, S.

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

Aydav, A.

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Barille, R.

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

Barillé, R.

R. Barillé, D. G. Pérez, Y. Morille, S. Zielińska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38(7), 1128–1130 (2013).
[Crossref] [PubMed]

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

Barrett, C. J.

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

K. G. Yager and C. J. Barrett, “Photomechanical surface patterning in azo-polymer materials,” Macromol. 39(26), 9320–9326 (2006).
[Crossref]

Barsan, M. M.

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Bor, Z.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Brehmer, L.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Butler, I. S.

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Csete, M.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Dabos-Seignon, S.

Deng, Y.

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

Eyer, J.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Fan, S.

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Fauchet, P. M.

A. E. Siegman and P. M. Fauchet, “Stimulated wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[Crossref]

Fiorini, C.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
[Crossref]

Geue, T. M.

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

Giersig, M.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Goldenberg, L. M.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Gouesbet, G.

Gréhan, G.

Gritsai, Y.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Hasegawa, M.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Heinrich, G.

V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
[Crossref] [PubMed]

Hemant, K. S. Y.

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Henneberg, O.

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

Hild, S.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Ikawa, T.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Janik, R.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Kandjani, S. A.

Karageorgiev, P.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Kawata, Y.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Kucharski, S.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

Kulikovska, O.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Kulikovsky, L.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Leblond, H.

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

Lee, S.

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Lee, Y. H.

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Lefin, P.

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
[Crossref]

Letournel, F.

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

Lu, Z.

Z. Lu and M. Zhou, “Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process,” J. Colloid Interface Sci. 361(2), 429–435 (2011).
[Crossref] [PubMed]

Maheu, B.

Mahimwalla, Z.

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

Mamiya, J. I.

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

Marti, O.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Mitsuoka, T.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Morawetz, K.

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

Morille, Y.

Nagavarma, B. V. N.

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Neher, D.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Nunzi, J. M.

M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
[Crossref] [PubMed]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
[Crossref]

Ortyl, E.

R. Barillé, D. G. Pérez, Y. Morille, S. Zielińska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38(7), 1128–1130 (2013).
[Crossref] [PubMed]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

S. A. Kandjani, R. Barille, S. Dabos-Seignon, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Multistate polarization addressing using a single beam in an azo polymer film,” Opt. Lett. 30(15), 1986–1988 (2005).
[Crossref] [PubMed]

Park, J. K.

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Pérez, D. G.

Pietsch, U.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

Plettl, A.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Priimagi, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

Qi, L. M.

X. Z. Ye and L. M. Qi, “Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas,” Sci. China Chem. 57(1), 58–69 (2014).
[Crossref]

Ramsay, K. S.

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Saiddine, M.

M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
[Crossref] [PubMed]

Saphiannikova, M.

V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
[Crossref] [PubMed]

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

Schulz, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Shevchenko, A.

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Shin, J.

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Shishido, A.

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

Shivakumar, H. G.

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Siegman, A. E.

A. E. Siegman and P. M. Fauchet, “Stimulated wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[Crossref]

Singleton, T. A.

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

Stiller, B.

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Stumpe, J.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Tajalli, P.

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

Teboul, V.

M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
[Crossref] [PubMed]

Tomczyk, J.

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

Tong, X.

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

Toshchevikov, V.

V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
[Crossref] [PubMed]

Tsuchimori, M.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Vasudha, L. S.

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Wang, X.

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

Watanabe, O.

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Yager, K. G.

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

K. G. Yager and C. J. Barrett, “Photomechanical surface patterning in azo-polymer materials,” Macromol. 39(26), 9320–9326 (2006).
[Crossref]

Ye, X. Z.

X. Z. Ye and L. M. Qi, “Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas,” Sci. China Chem. 57(1), 58–69 (2014).
[Crossref]

Zhou, M.

Z. Lu and M. Zhou, “Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process,” J. Colloid Interface Sci. 361(2), 429–435 (2011).
[Crossref] [PubMed]

Zielinska, S.

R. Barillé, D. G. Pérez, Y. Morille, S. Zielińska, and E. Ortyl, “Simple turbulence measurements with azopolymer thin films,” Opt. Lett. 38(7), 1128–1130 (2013).
[Crossref] [PubMed]

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

Ziemann, P.

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Appl. Phys. Lett. (2)

R. Barillé, P. Tajalli, S. Zielińska, E. Ortyl, S. Kucharski, and J. M. Nunzi, “Surface relief grating formation on nano-objects,” Appl. Phys. Lett. 95(5), 053102 (2009).
[Crossref]

R. Barillé, P. Tajalli, S. Kucharski, E. Ortyl, and J. M. Nunzi, “Photoinduced deformation of azopolymer nanometric spheres,” Appl. Phys. Lett. 96(16), 163104 (2010).
[Crossref]

Asian J. Pharm. Clin. Res. (1)

B. V. N. Nagavarma, K. S. Y. Hemant, A. Aydav, L. S. Vasudha, and H. G. Shivakumar, “Different techniques for preparation of polymeric nanoparticles - a review,” Asian J. Pharm. Clin. Res. 5(3), 16–23 (2012).

Colloids Surf. B Biointerfaces (1)

R. Barillé, R. Janik, S. Kucharski, J. Eyer, and F. Letournel, “Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: an in vitro study for neuron guidance,” Colloids Surf. B Biointerfaces 88(1), 63–71 (2011).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. E. Siegman and P. M. Fauchet, “Stimulated wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. 22(8), 1384–1403 (1986).
[Crossref]

J. Chem. Phys. (2)

M. Saphiannikova, T. M. Geue, O. Henneberg, K. Morawetz, and U. Pietsch, “Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings,” J. Chem. Phys. 120(8), 4039–4045 (2004).
[Crossref] [PubMed]

M. Saiddine, V. Teboul, and J. M. Nunzi, “Isomerization-induced surface relief gratings formation: A comparison between the probe and the matrix dynamics,” J. Chem. Phys. 133(4), 044902 (2010).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

Z. Lu and M. Zhou, “Fabrication of large scale two-dimensional colloidal crystal of polystyrene particles by an interfacial self-ordering process,” J. Colloid Interface Sci. 361(2), 429–435 (2011).
[Crossref] [PubMed]

J. Mater. Chem. (1)

L. M. Goldenberg, L. Kulikovsky, Y. Gritsai, O. Kulikovska, J. Tomczyk, and J. Stumpe, “Very efficient surface relief holographic materials based on azobenzene-containing epoxy resins cured in films,” J. Mater. Chem. 20(41), 9161–9171 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. At. Mol. Opt. Phys. (1)

H. Leblond, R. Barille, S. Ahmadi-Kandjani, J. M. Nunzi, E. Ortyl, and S. Kucharski, “Spontaneous formation of optically induced surface relief gratings,” J. Phys. At. Mol. Opt. Phys. 42(20), 205401 (2009).
[Crossref]

J. Phys. Chem. B (2)

V. Toshchevikov, M. Saphiannikova, and G. Heinrich, “Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers,” J. Phys. Chem. B 113(15), 5032–5045 (2009).
[Crossref] [PubMed]

T. A. Singleton, K. S. Ramsay, M. M. Barsan, I. S. Butler, and C. J. Barrett, “Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle,” J. Phys. Chem. B 116(32), 9860–9865 (2012).
[Crossref] [PubMed]

J. Polym. Sci., B, Polym. Phys. (1)

A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” J. Polym. Sci., B, Polym. Phys. 52(3), 163–182 (2014).
[Crossref]

Macromol. (1)

K. G. Yager and C. J. Barrett, “Photomechanical surface patterning in azo-polymer materials,” Macromol. 39(26), 9320–9326 (2006).
[Crossref]

Macromolec. (1)

Y. Li, Y. Deng, X. Tong, and X. Wang, “Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer,” Macromolec. 39(3), 1108–1115 (2006).
[Crossref]

Nano Lett. (1)

S. Lee, J. Shin, Y. H. Lee, S. Fan, and J. K. Park, “Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes,” Nano Lett. 10(1), 296–304 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

P. Karageorgiev, D. Neher, B. Schulz, B. Stiller, U. Pietsch, M. Giersig, and L. Brehmer, “From anisotropic photo-fluidity towards nanomanipulation in the optical near-field,” Nat. Mater. 4(9), 699–703 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

P. Lefin, C. Fiorini, and J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9(1-4), 323–328 (1998).
[Crossref]

Phys. Rev. B (1)

T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, and Y. Kawata, “Azobenzene polymer surface deformation due to the gradient force of the optical near field of monodispersed polystyrene spheres,” Phys. Rev. B 64(19), 195408 (2001).
[Crossref]

Polym. Bull. (1)

Z. Mahimwalla, K. G. Yager, J. I. Mamiya, A. Shishido, A. Priimagi, and C. J. Barrett, “Azobenzene photomechanics: prospects and potential applications,” Polym. Bull. 69(8), 967–1006 (2012).
[Crossref]

Sci. China Chem. (1)

X. Z. Ye and L. M. Qi, “Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas,” Sci. China Chem. 57(1), 58–69 (2014).
[Crossref]

Thin Solid Films (1)

M. Csete, S. Hild, A. Plettl, P. Ziemann, Z. Bor, and O. Marti, “The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films,” Thin Solid Films 453–454, 114–120 (2004).
[Crossref]

Other (1)

D. Guo, J. Li, G. Xie, Y. Wang, and J. Lao, “Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis,” Langmuir B, 7206–7212 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM images of the colloidal film formed by monodispersed nanospheres. (b) Image of the edge of the film showing dispersed nanospheres with 290 ± 10 nm average diameter.
Fig. 2
Fig. 2 Comparison between diffraction efficiencies (arbitrary units) recorded during grating inscription for the self-assembled azopolymer nanospheres under two different irradiances and for a uniform thin film of azopolymer irradiated under a single beam of 0.7 W/cm2.
Fig. 3
Fig. 3 (a) AFM image of the surface of self-assembled nanospheres after single laser beam inscription of a grating under 0.7 W/cm2. (b) Surface relief grating profile: pitch is 1.3 ± 0.2 μm, amplitude is 300 ± 20 nm.
Fig. 4
Fig. 4 Computer generated spatial Fourier transform of the surface relief patterns of: (a) grating formed by two beam interference printed on an azopolymer thin film, (b) single beam illumination of the azopolymer nanospheres under horizontal polarization. Horizontal stripes discussed in the text are highlighted with white lines in the figure. Full bar length given by the software is 1.3 μm−1.
Fig. 5
Fig. 5 (a) SEM image of colloidal spheres of the azopolymer after 10 min exposition to a vertical polarization beam. (b) Elongated length L as a function of the initial diameter D of the nanospheres.
Fig. 6
Fig. 6 Schematic evolution from the assembly of colloid nanospheres into the surface relief grating during elongation of the nanospheres along the polarization direction. Vertical direction in the figure is the direction perpendicular to the substrate. The zoom in the scheme illustrates the subduction mechanism responsible for the large amplitude relief happening in the direction of the oblique arrows. Insert is a zoom on a SEM image of the grating fringes on top of which the spherical particles emerge.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F= 4 3 E D 2 ε 1.5 .
δL= ( 9 F 2 16D E 2 ) 1/3 .

Metrics