Abstract

An effective molecular alignment method and appropriate monomer material for governing the liquid crystal (LC) molecular configuration and enhancing the electro-optical performance of in-plane-switching vertically aligned LC devices are proposed. Three kinds of monomer materials are selected and separately mixed with the nematic LC. A functional and stabilized small pretilt angle of 2° is constructed in the cells by using the U-shaped-alignment electrical field and 2-wt.% mixed concentration during the photo-curing process. Compared to the pure cell, the fabricated cell with the surface-anchored cross-linking polymers respectively achieves over 30% and 60% improvement in the optical-switch and gray-level responses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of tunable electro-optical properties on U-shaped-alignment in-plane switching liquid crystal devices

Guan-Jhong Lin, Tien-Jung Chen, Yi-Wei Tsai, and Jin-Jei Wu
Opt. Mater. Express 7(7) 2461-2470 (2017)

Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks

Guan-Jhong Lin, Tien-Jung Chen, Bo-Yu Chen, Jin-Jei Wu, and Ying-Jay Yang
Opt. Mater. Express 4(8) 1657-1667 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
    [Crossref]
  2. R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
    [Crossref]
  3. Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
    [Crossref]
  4. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
    [Crossref]
  5. K. Kawabe, T. Furuhashi, and Y. Tanaka, “New TFT-LCD driving method for improved moving picture quality,” SID Symp. Dig. Tech. Pap. 32(1), 998–1001 (2001).
    [Crossref]
  6. M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
    [Crossref]
  7. S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
    [Crossref]
  8. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
    [Crossref]
  9. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
    [Crossref]
  10. S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
    [Crossref]
  11. S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
    [Crossref]
  12. J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
    [Crossref]
  13. S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer Stabilized In-Plane Field Driven Vertical Alignment Liquid Crystal Device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
    [Crossref]
  14. C. Y. Huang, W. Y. Jhuang, and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express 16(6), 3859–3864 (2008).
    [Crossref] [PubMed]
  15. J. K. Song, K. E. Lee, H. S. Chang, S. M. Hong, M. B. Jun, B. Y. Park, S. S. Seomun, K. H. Kim, and S. S. Kim, “Novel method for fast response time in PVA mode,” SID Symp. Dig. Tech. Pap. 35(1), 1344–1347 (2004).
  16. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
    [Crossref]
  17. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
    [Crossref]
  18. S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
    [Crossref]
  19. Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
    [Crossref] [PubMed]
  20. T. J. Chen and K. L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
    [Crossref]
  21. G. W. Smith, “Mixing and phase separation in liquid crystal/matrix systems: Determination of the excess specific heat of mixing,” Phys. Rev. Lett. 70(2), 198–201 (1993).
    [Crossref] [PubMed]
  22. T. Kyu and D. Nwabunma, “Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures,” Macromolecules 34(26), 9168–9172 (2001).
    [Crossref]
  23. B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
    [Crossref]
  24. G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
    [Crossref]
  25. G. J. Lin, T. J. Chen, Y. W. Tsai, Y. T. Lin, J. J. Wu, and Y. J. Yang, “Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices,” Opt. Lett. 39(21), 6225–6228 (2014).
    [Crossref] [PubMed]
  26. A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst. 19(2), 269–276 (1995).
    [Crossref]
  27. F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
    [Crossref]
  28. X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
    [Crossref]
  29. A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
    [Crossref] [PubMed]
  30. X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
    [Crossref]
  31. G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).
  32. G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
    [Crossref]
  33. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
    [Crossref]

2015 (1)

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

2014 (4)

2011 (1)

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

2010 (1)

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

2009 (3)

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
[Crossref]

2008 (2)

T. J. Chen and K. L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[Crossref]

C. Y. Huang, W. Y. Jhuang, and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express 16(6), 3859–3864 (2008).
[Crossref] [PubMed]

2007 (3)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

2006 (3)

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

2005 (2)

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

2004 (1)

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

2002 (1)

B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

2001 (1)

T. Kyu and D. Nwabunma, “Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures,” Macromolecules 34(26), 9168–9172 (2001).
[Crossref]

1997 (1)

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

1995 (2)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst. 19(2), 269–276 (1995).
[Crossref]

1993 (1)

G. W. Smith, “Mixing and phase separation in liquid crystal/matrix systems: Determination of the excess specific heat of mixing,” Phys. Rev. Lett. 70(2), 198–201 (1993).
[Crossref] [PubMed]

1976 (1)

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
[Crossref]

Akkurt, F.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
[Crossref]

Alicilar, A.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
[Crossref]

Baur, G.

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
[Crossref]

Berreman, D. W.

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
[Crossref]

Chen, B. Y.

Chen, T. J.

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

G. J. Lin, T. J. Chen, Y. W. Tsai, Y. T. Lin, J. J. Wu, and Y. J. Yang, “Performance enhancement using a non-uniform vertical electric field and polymer networks for in-plane switching of multi-pretilt, vertically aligned liquid crystal devices,” Opt. Lett. 39(21), 6225–6228 (2014).
[Crossref] [PubMed]

G. J. Lin, T. J. Chen, B. Y. Chen, J. J. Wu, and Y. J. Yang, “Enhanced electro-optical properties of vertically aligned in-plane-switching liquid crystal displays employing polymer networks,” Opt. Mater. Express 4(8), 1657–1667 (2014).
[Crossref]

T. J. Chen and K. L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[Crossref]

Chien, L. C.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Chigrinov, V.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Cho, I. Y.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

Choi, Y. E.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

Chu, K. L.

T. J. Chen and K. L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[Crossref]

Dark, M. L.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Furuta, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Garbo, A. D.

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst. 19(2), 269–276 (1995).
[Crossref]

Ge, Z.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Guan, R. H.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Higuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Ho, J.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Hsieh, C. T.

Huang, C. Y.

Iguanero, B. P.

B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Jeong, K. U.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

Jhuang, W. Y.

Jin, H. S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Kang, S. W.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Kang, W. X.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Kaya, N.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
[Crossref]

Kikuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Kim, D. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Kim, H. Y.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Kim, K. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, K. J.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, S. H.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Kim, S. M.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Kim, W.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Koda, T.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Komitov, L.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Kundu, S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Kwok, H. S.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Kyu, T.

T. Kyu and D. Nwabunma, “Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures,” Macromolecules 34(26), 9168–9172 (2001).
[Crossref]

Lai, K. Y.

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

Lee, B. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Lee, C. H.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Lee, G. D.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Lee, J. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

Lee, M. J.

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

Lee, S. H.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express 22(9), 10634–10641 (2014).
[Crossref] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Lee, T.-R.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Lim, Y. J.

Lin, G. J.

Lin, Y. H.

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Lin, Y. T.

Lu, R.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

Lyu, J. J.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

Momoi, Y.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Moore, M. H.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Murauski, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Muravsky, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Nie, X.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Nobili, M.

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst. 19(2), 269–276 (1995).
[Crossref]

Nwabunma, D.

T. Kyu and D. Nwabunma, “Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures,” Macromolecules 34(26), 9168–9172 (2001).
[Crossref]

Oh, C. H.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

Park, H. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Park, I. C.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Park, J. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Pérez, A. O.

B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Rho, B. G.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

Shashidhar, R.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Shenoy, D. K.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Smith, G. W.

G. W. Smith, “Mixing and phase separation in liquid crystal/matrix systems: Determination of the excess specific heat of mixing,” Phys. Rev. Lett. 70(2), 198–201 (1993).
[Crossref] [PubMed]

Son, J.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

Sun, Y. B.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

Tamai, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Tapia, I. F.

B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Tsai, Y. W.

Wang, H.

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Wittwer, V.

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
[Crossref]

Wu, J. J.

Wu, S. T.

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Wu, T. X.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

Xianyu, H.

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

Yang, Y. J.

Yeung, F. S. Y.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Yun, Y. K.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

Zhu, X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

Appl. Phys. Lett. (4)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett. 67(26), 3895–3897 (1995).
[Crossref]

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett. 71(19), 2851–2853 (1997).
[Crossref]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett. 90(26), 261910 (2007).
[Crossref]

T. J. Chen and K. L. Chu, “Pretilt angle control for single-cell-gap transflective liquid crystal cells,” Appl. Phys. Lett. 92(9), 091102 (2008).
[Crossref]

Fuller. Nanotube. Car. N. (1)

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N. 17(6), 616–624 (2009).
[Crossref]

J. Appl. Phys. (2)

X. Nie, Y. H. Lin, T. X. Wu, H. Wang, Z. Ge, and S. T. Wu, “Polar anchoring energy measurement of vertically aligned liquid-crystal cells,” J. Appl. Phys. 98(1), 013516 (2005).
[Crossref]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007).
[Crossref]

J. Disp. Technol. (1)

X. Nie, H. Xianyu, R. Lu, T. X. Wu, and S. T. Wu, “Pretilt angle effects on liquid crystal response time,” J. Disp. Technol. 3(3), 280–283 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys. 44(32), 325104 (2011).
[Crossref]

J. Polym. Sci. Part B Polym. Phys. (1)

G. J. Lin, T. J. Chen, M. J. Lee, J. J. Wu, K. Y. Lai, and Y. J. Yang, “Effect of cross-linking polymer networks on the molecular reorientation and electro-optical performance of in-plane switching vertically aligned liquid crystal devices,” J. Polym. Sci. Part B Polym. Phys. 53(16), 1123–1130 (2015).

J. Soc. Inf. Disp. (3)

S. H. Lee, S. M. Kim, and S. T. Wu, “Review Paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp. 17(7), 551–559 (2009).
[Crossref]

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp. 18(2), 134–140 (2010).
[Crossref]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp. 14(11), 1031–1037 (2006).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys. 48(3), 032405 (2009).
[Crossref]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys. 43(11A), 7643–7647 (2004).
[Crossref]

Liq. Cryst. (4)

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst. 41(4), 552–557 (2014).
[Crossref]

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst. 33(7), 829–832 (2006).
[Crossref]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst. 19(2), 269–276 (1995).
[Crossref]

Macromolecules (1)

T. Kyu and D. Nwabunma, “Simulations of microlens arrays formed by pattern-photopolymerization-induced phase separation of liquid crystal/monomer mixtures,” Macromolecules 34(26), 9168–9172 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

B. P. Iguanero, A. O. Pérez, and I. F. Tapia, “Holographic material film composed by Norland NOA 65® adhesive,” Opt. Mater. 20(3), 225–232 (2002).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. (1)

G. Baur, V. Wittwer, and D. W. Berreman, “Determination of the tilt angles at surfaces of substrates in liquid crystal cells,” Phys. Lett. 56(2), 142–144 (1976).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. W. Smith, “Mixing and phase separation in liquid crystal/matrix systems: Determination of the excess specific heat of mixing,” Phys. Rev. Lett. 70(2), 198–201 (1993).
[Crossref] [PubMed]

Other (5)

S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer Stabilized In-Plane Field Driven Vertical Alignment Liquid Crystal Device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
[Crossref]

J. K. Song, K. E. Lee, H. S. Chang, S. M. Hong, M. B. Jun, B. Y. Park, S. S. Seomun, K. H. Kim, and S. S. Kim, “Novel method for fast response time in PVA mode,” SID Symp. Dig. Tech. Pap. 35(1), 1344–1347 (2004).

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
[Crossref]

K. Kawabe, T. Furuhashi, and Y. Tanaka, “New TFT-LCD driving method for improved moving picture quality,” SID Symp. Dig. Tech. Pap. 32(1), 998–1001 (2001).
[Crossref]

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Layer structure and USA process of a USA IPS-VA cell. During the curing process, the VC and UV light are applied to the cell. The U-shaped vertical electrical field is shown by dashed lines. A small and functional pretilt angle is symbolized by θ with respect to the normal direction of the substrate surface. (b) LC molecular reorientation by employing higher VIPS in a USA IPS-VA cell. As the higher VIPS is applied to the cell, the LC molecules will further reorient, and the LC molecules located in the s region will be parallel to the substrate surface.
Fig. 2
Fig. 2 (a)-(c) Polymer morphologies for the TA-9164, NOA65, and UCL002 monomer materials. These images are recorded by FE-SEM. The monomer concentration is 2 wt.%. TA-9164, NOA65, and UCL002 monomer materials respectively show the cross-linking, stone-like, and sphere-like polymer morphologies.
Fig. 3
Fig. 3 POM images of four kinds of IPS-VA-based cells and for the variation of cell transmittance as a function of applied voltage: (A)–(Aiv) pure E7 LC cell, (B)–(Biv) USA NOA65 polymer cell, (C)–(Civ) USA TA-9164 polymer cell, and (D)–(Div) USA UCL002 polymer cell. The mixed concentration is of 2 wt.%, and the cell is sandwiched at 45° between the crossed polarizers. The red arrows shown in (Aiii) and (Aiv) represent the change in molecular orientation. The conoscopic images, showing the effect of polymer morphology on the alignment quality of IPS-VA cells, are inserted in (A), (B), (C), and (D). Of all the cells, the planar cross-linking TA-9164 polymer cell has a good vertical aligned quality because the crosshair is located at the center of the circle.
Fig. 4
Fig. 4 (a) Normalized T-V curves for different kinds of USA IPS-VA cells with a pretilt angle of 2° and a mixed concentration of 2 wt.%. (b) Stronger anchoring effect on the LC molecular reorientation of the USA IPS-VA LC/polymer cells with the TA-9164 surface-anchored cross-linking polymer morphology at a higher driving voltage (VIPS > VTmax). (c) Weaker anchoring effect on the LC molecular reorientation of the USA IPS-VA LC/polymer cells with the NOA65/UCL002 surface-anchored stone-like/sphere-like polymer morphology at a higher driving voltage (VIPS > VTmax).
Fig. 5
Fig. 5 (a) tr and (b) tf responses for the pure E7 LC cell, and the USA NOA65, USA TA-9164, and USA UCL002 polymer cells. Specific gray-level tr and tf responses for the pure E7 LC cell, USA NOA65, USA TA-9164, and USA UCL002 polymer cells in (c) and (d), respectively. The pretilt angle is around 2° with respect to the normal direction of the substrate surface, and the mixed concentration is around 2 wt.% for these USA IPS-VA LC/polymer cells.
Fig. 6
Fig. 6 Total gray-level tr and tf responses for (a)/(e) the pure E7 LC cell, (b)/(f) the USA NOA65 polymer cell, (c)/(g) the USA UCL002 polymer cell, and (d)/(h) the USA TA-9164 polymer cell.

Tables (1)

Tables Icon

Table 1 Electro-Optical Properties of the USA IPS-VA Cells with Different Polymer Morphologies.

Metrics