Abstract

This paper proposes a graphene-based broadband tunable absorber with over 90% absorption and is polarization insensitive at mid-infrared frequencies. The proposed absorber consists of a periodic array of a dual electric LC (ELC) metamaterial unit fabricated on a multilayer structure composed of Au/BaF2/graphene materials from the bottom to the top. In the proposed structure, interaction between the dual ELC unit and the graphene sheet generates three close resonant frequencies, thus leading to a broadband absorption from 25.08THz to 39.56THz. By varying graphene’s chemical potential, wide absorption bandwidth can be flexibly tuned. Due to the approximate symmetry of the structure, the proposed absorber demonstrates polarization-insensitive and wide-angle characteristics. Simulation results demonstrate that the absorption efficiency of the proposed structure can be as high as more than 90% from 25.08 THz to 44.81THz with variation of the graphene’s chemical potential from 0.2eV to 0.8eV.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband multilayer graphene metamaterial absorbers

Limei Qi and Chang Liu
Opt. Mater. Express 9(3) 1298-1309 (2019)

Dual broadband absorber based on graphene metamaterial in the terahertz range

Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu
Opt. Mater. Express 8(12) 3899-3909 (2018)

Ultra-thin and broadband tunable metamaterial graphene absorber

Han Xiong, Ying-Bo Wu, Ji Dong, Ming-Chun Tang, Yan-Nan Jiang, and Xiao-Ping Zeng
Opt. Express 26(2) 1681-1688 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
    [Crossref] [PubMed]
  2. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
    [Crossref]
  3. X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
    [Crossref]
  4. W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
    [Crossref]
  5. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
    [Crossref]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  7. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  8. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  9. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  10. Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).
  11. Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, H. Liu, H. Meng, and R. Liang, “Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths,” Opt. Express 24(13), 14344–14351 (2016).
    [Crossref] [PubMed]
  12. X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
    [Crossref]
  13. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref] [PubMed]
  14. B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
    [Crossref]
  15. R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
    [Crossref]
  16. B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
    [Crossref]
  17. B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 026222 (2013).
    [Crossref]
  18. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
    [Crossref]
  19. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
    [Crossref]
  20. G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  21. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  22. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  23. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  24. H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
    [Crossref]
  25. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref] [PubMed]

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

2014 (4)

H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

2013 (5)

M. Farhat, C. Rockstuhl, and H. Bağcı, “A 3D tunable and multi-frequency graphene plasmonic cloak,” Opt. Express 21(10), 12592–12603 (2013).
[Crossref] [PubMed]

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 026222 (2013).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

2012 (3)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

2011 (3)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

2009 (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (2)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
[Crossref]

Alaee, R.

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Atmatzakis, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Bagci, H.

Bao, J.

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

Bian, B.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Boden, S. A.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Cai, Y.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chen, Q.

Cumming, D. R. S.

De Angelis, F.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Di Fabrizio, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Farhat, M.

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Gajic, R.

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 026222 (2013).
[Crossref]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Grant, J.

Gu, Y.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
[Crossref]

Hang, H.

H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

He, X.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Hu, G.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Huang, R.

Isic, G.

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jakovljevic, M. M.

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

Jiang, J.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Jiao, Z.

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kang, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Khalid, A.

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Kholmanov, I.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Kong, X.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lederer, F.

Li, T.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Li, X.

Li, Y.

H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
[Crossref]

Liang, R.

Liu, H.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, Q. H.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Liu, S.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Liu, Y.

Luo, X.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Luo, Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Ma, B.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Ma, Y.

Meng, F.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Meng, H.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Nikolaenko, A. E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Ning, R.

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Premaratne, M.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Pu, M.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Rockstuhl, C.

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Saha, S. C.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
[Crossref]

Shen, Z. X.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Shvets, G.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Sikdar, D.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, M.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Su, Z.

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vasic, B.

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 026222 (2013).
[Crossref]

Wang, C.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, J.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Wang, L.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Wang, S.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Wang, W.

Wang, Y.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Wei, Z.

Wu, Q.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Xiao, F.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Xu, Y.

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

Yang, G.

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

Yang, H.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Ye, Y. H.

H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
[Crossref]

Yin, J.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, H.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, H.

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, X.

Zhao, Z.

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Zheludev, N. I.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

Zhu, J.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Zhu, W.

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

Appl. Phys. Lett. (6)

W. Zhu, F. Xiao, M. Kang, D. Sikdar, and M. Premaratne, “Tunable terahertz left-handed metamaterial based on multi-layer graphene-dielectric composite,” Appl. Phys. Lett. 104(5), 051902 (2014).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100(18), 181109 (2012).
[Crossref]

B. Vasić, M. M. Jakovljević, G. Isić, and R. Gajić, “Tunable metamaterials based on split ring resonators and doped graphene,” Appl. Phys. Lett. 103(1), 011102 (2013).
[Crossref]

B. Vasić and R. Gajic, “Graphene induced spectral tuning of metamaterial absorbers at mid-infrared frequencies,” Appl. Phys. Lett. 103(26), 026222 (2013).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Chin. Phys. Lett. (1)

H. Hang, Y. Li, and Y. H. Ye, “Near-field enhancement and absorption properties of metal-dielectric-metal microcavities in the mid-infrared range,” Chin. Phys. Lett. 31(1), 018101 (2014).
[Crossref]

J. Appl. Phys. (5)

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

R. Ning, J. Bao, Z. Jiao, and Y. Xu, “Omnidirectional polarization-insensitive tunable absorption in graphene metamaterial of nanodisk structure,” J. Appl. Phys. 118(20), 203101 (2015).
[Crossref]

B. Bian, S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, “Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114(19), 194511 (2013).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, J. Jiang, G. Yang, F. Meng, and Q. Wu, “Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene,” J. Appl. Phys. 115(17), 17B903 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter 19(2), 125429 (2007).
[Crossref]

Nano Lett. (1)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B 75(16), 165407 (2007).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

Y. Wang, M. Song, M. Pu, Y. Gu, G. Hu, Z. Zhao, C. Wang, H. Yu, and X. Luo, “Stacked graphene for tunable terahertz absorber with customized bandwidth,” Plasmonics1–6 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Top and side views of the absorbing structure. (a) the proposed absorbing structure. (b) a square ring fabricated on a Graphene/BaF2/Au multilayer structure. (c) a square ring fabricated on a BaF2/Au multilayer structure.
Fig. 2
Fig. 2 The unit cell and whole structure of the proposed absorber. (a) infinite periodic simulation model with periodic boundary conditions (PBC) around the unit cell. (b). a tunable gate voltage applied to the proposed absorber.
Fig. 3
Fig. 3 Simulated absorptivity of the proposed absorber with μc = 0.5eV for TE and TM polarizations.
Fig. 4
Fig. 4 Absorption comparison of three absorbers.
Fig. 5
Fig. 5 Current distributions of the graphene-based metamaterial absorber. (a) on the dual ELC unit at 25THz. (b) on surface of graphene at 25THz. (c) on the ground plane at 25THz. (d) on the dual ELC unit at 31THz. (e) on surface of graphene at 31THz. (f) on the ground plane at 31THz. (g) on the dual ELC unit at 38THz. (h) on surface of graphene at 38THz. (i) on the ground plane at 38THz.
Fig. 6
Fig. 6 Variation of simulated absorption with the geometric parameters. (a) w. (b) m. (c) d1. (d) t.
Fig. 7
Fig. 7 Simulated absorption performance at different incidence angles. (a) TM mode. (b) TE mode.
Fig. 8
Fig. 8 Simulated variation of absorption with frequencies for different azimuth angles. (a) TM mode. (b) TE mode.
Fig. 9
Fig. 9 Variation of the absorption with the chemical potential μ c . (a) TE mode. (b) TM mode.

Tables (2)

Tables Icon

Table 1 Detailed dimensions of the proposed absorber

Tables Icon

Table 2 Absorption for different chemical potentials

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , μ c , Γ , Τ ) = σ int r a ( ω , μ c , Γ , Τ ) + σ int e r ( ω , μ c , Γ , Τ ) = i e 2 k B T π 2 [ 1 ( ω + i 2 Γ ) 2 0 d ε ( n F ( ε ) ε n F ( ε ) ε ) ε 0 d ε n F ( ε ) n F ( ε ) ( ω + i 2 Γ ) 2 4 ( ε ) 2 ]
σ int r a ( ω , μ c , Γ , Τ ) i e 2 k B T π 2 ( ω + i 2 Γ ) [ μ c k B T + 2 ln ( e μ c k B T + 1 ) ]
σ int e r ( ω , μ c , Γ , Τ ) i e 2 4 π ln [ 2 | μ c | ( ω + i 2 Γ ) 2 | μ c | + ( ω + i 2 Γ ) ]
| μ c | v F { π a 0 | V A V D i r a c | } 1 / 2
Δ ω = ( Im ( σ ( ω ) ) i Re ( σ ( ω ) ) ) S | E x y | 2 d S W 0

Metrics