Abstract

Nanoscale quantum cutting (QC) phosphor β-NaYF4:Tb3+,Yb3+ nanoparticles (NPs) and noble metal Ag NPs are synthesized respectively, then β-NaYF4:Tb3+,Yb3+ NPs are doped with Ag NPs uniformly. Experimentally, plasmon enhanced near-infrared (NIR) QC involving a Yb3+ ion at 977nm (2F5/22F7/2) emission is achieved under 377nm (7F65D3) excitation of Tb3+ ions. The QC luminescence intensity first increases, then decreases with the increase of Ag NPs concentration. The maximum QC luminescence enhancement factor reaches 2.4 when the concentration of Ag NPs is 0.25%. Theoretically, a 3D finite-difference time-domain (FDTD) simulation is carried out to numerically estimate the electric field enhancement around Ag NPs, and then the theoretical QC luminescence enhancement factor is calculated. Our study may provide a promising QC layer on the top of silicon-based solar cells to improve the photovoltaic conversion efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of the near-infrared emission in novel quantum cutting SiO2:Tb3+, Yb3+ thin films by Ag species

Siqin Wang, Jianbei Qiu, Xuhui Xu, Qi Wang, Dacheng Zhou, Zhengwen Yang, and Zhiguo Song
Opt. Mater. Express 6(4) 1065-1078 (2016)

Plasmon enhanced near-infrared downconversion luminescence of β-NaYF4:Pr3+ nanoparticles by high-ordered Ag nanopillar arrays with tunable nanogaps

Biao Zheng, Jun Wang, Lin Lin, Jinquan Hong, Lili Huang, Yuliang Li, Zhuohong Feng, Zhezhe Wang, and Zhiqiang Zheng
Opt. Mater. Express 8(11) 3401-3409 (2018)

Efficient near-infrared downconversion and energy transfer mechanism in Tb4+-Yb3+ co-doped NaYF4 nanoparticles

Biao Zheng, Lin Lin, Senyuan Xu, Zhezhe Wang, Zhuohong Feng, and Zhiqiang Zheng
Opt. Mater. Express 6(9) 2769-2775 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
    [Crossref]
  2. X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
    [Crossref] [PubMed]
  3. A. Guille, A. Pereira, C. Martinet, and B. Moine, “Quantum cutting in CaYAlO4: Pr3+, Yb3+.,” Opt. Lett. 37(12), 2280–2282 (2012).
    [Crossref] [PubMed]
  4. K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express 19(3), 1749–1754 (2011).
    [Crossref] [PubMed]
  5. Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).
  6. B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
    [Crossref] [PubMed]
  7. W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
    [Crossref] [PubMed]
  8. L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
    [Crossref]
  9. Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
    [Crossref]
  10. Z. Liu, J. Li, L. Yang, Q. Chen, Y. Chu, and N. Dai, “Efficient near-infrared quantum cutting in Ce3+–Yb3+ codoped glass for solar photovoltaic,” Sol. Energ. Mat. Sol. C. 122, 46–50 (2014).
    [Crossref]
  11. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
    [Crossref]
  12. Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942 (2016).
    [Crossref]
  13. P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
    [Crossref] [PubMed]
  14. X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
    [Crossref]
  15. N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
    [Crossref] [PubMed]
  16. E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
    [Crossref] [PubMed]
  17. Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
    [Crossref]
  18. Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
    [Crossref]
  19. T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
    [Crossref]
  20. C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
    [Crossref] [PubMed]
  21. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref] [PubMed]
  22. J. Cao, L. Chen, W. Chen, D. Xu, X. Sun, and H. Guo, “Enhanced emissions in self-crystallized oxyfluoride scintillating glass ceramics containing KTb2F7 nanocrystals,” Opt. Mater. Express 6(7), 2201 (2016).
    [Crossref]
  23. M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
    [Crossref]
  24. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [Crossref]

2016 (2)

2015 (5)

X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
[Crossref] [PubMed]

Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

2014 (4)

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

2013 (2)

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

2012 (3)

A. Guille, A. Pereira, C. Martinet, and B. Moine, “Quantum cutting in CaYAlO4: Pr3+, Yb3+.,” Opt. Lett. 37(12), 2280–2282 (2012).
[Crossref] [PubMed]

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

2011 (2)

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

K. Deng, T. Gong, L. Hu, X. Wei, Y. Chen, and M. Yin, “Efficient near-infrared quantum cutting in NaYF4: Ho3+, Yb3+ for solar photovoltaics,” Opt. Express 19(3), 1749–1754 (2011).
[Crossref] [PubMed]

2010 (2)

C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
[Crossref] [PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

2009 (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

2002 (2)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Abadeer, N. S.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Alù, A.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

An, Y.-T.

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Bai, X.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Brennan, M. R.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Cao, J.

Cardin, J.

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Chen, D.

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Chen, H.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Chen, J.

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Chen, L.

Chen, W.

Chen, X.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

X. Chen, S. Li, G. J. Salamo, Y. Li, L. He, G. Yang, Y. Gao, and Q. Liu, “Sensitized intense near-infrared downconversion quantum cutting three-photon luminescence phenomena of the Tm3+ ion activator in Tm3+Bi3+:YNbO4 powder phosphor,” Opt. Express 23(3), A51–A61 (2015).
[Crossref] [PubMed]

Chen, Y.

Cui, S.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Cybinska, J.

C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
[Crossref] [PubMed]

Dai, N.

Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).

Deng, K.

Dong, J.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Dong, Z.

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Estakhri, N. M.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Feng, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Fujii, M.

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

Gao, W.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Gao, Y.

Gnanasammandhan, M. K.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Gong, T.

Gourbilleau, F.

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Guan, Z.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Guille, A.

Guo, H.

Han, Q.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Hayashi, S.

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

He, E.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

He, L.

Hu, L.

Huang, R.

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Hui, L.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Imakita, K.

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Jiang, R.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Johnson, A.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Kim, D. H.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Labbé, C.

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Lee, Y. H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Lei, L.

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Li, H.-Y.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Li, J.

Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Li, Q.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Li, S.

Li, Y.

Li, Z.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Lin, H.

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Lin, L.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Liu, Q.

Liu, X.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Liu, Z.

Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).

Lorbeer, C.

C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
[Crossref] [PubMed]

Lu, Y.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Martinet, C.

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Ming, T.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Moine, B.

Morales, M.

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Mudring, A. V.

C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
[Crossref] [PubMed]

Murphy, C. J.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Nakano, T.

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

Pereira, A.

Qin, Y.

Qiu, J.

Salamo, G. J.

Shih, C.-K. K.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Song, H.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Sun, X.

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Tian, H.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Wang, J.

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Wang, L.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Wang, Y.

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Wang, Y.-L.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Wang, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Wei, X.

Wilson, W. L.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

Xia, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Xiong, Y.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Xu, D.

Xu, J.

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Xu, Q.-H.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Xu, S.

Xu, W.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Xu, X.

Yang, G.

Yang, Y.

Yin, M.

Yin, Z.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Yuan, P.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Zhang, L.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zhang, Y.

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

Zhang, Z.

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Zheng, B.

Zheng, H.

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Zheng, Z.

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Zhou, D.

Y. Qin, Z. Dong, D. Zhou, Y. Yang, X. Xu, and J. Qiu, “Modification on populating paths of β-NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites with plasmon enhanced upconversion emission,” Opt. Mater. Express 6(6), 1942 (2016).
[Crossref]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zhu, W.

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

ACS Nano (1)

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+,Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. 21(30), 3073–3077 (2009).
[Crossref]

Adv. Opt. Mater. (1)

Y.-T. An, C. Labbé, J. Cardin, M. Morales, and F. Gourbilleau, “Highly Efficient Infrared Quantum Cutting in Tb3+−Yb3+ Codoped Silicon Oxynitride for Solar Cell Applications,” Adv. Opt. Mater. 1(11), 855–862 (2013).
[Crossref]

Appl. Phys. A-Mater (1)

Z. Liu, N. Dai, and J. Li, “High-efficient near-infrared quantum cutting based on broadband absorption in Eu2+–Yb3+ co-doped glass for photovoltaic applications,” Appl. Phys. A-Mater 119(2), 553–557 (2015).

Chem. Commun. (Camb.) (1)

C. Lorbeer, J. Cybinska, and A. V. Mudring, “Facile preparation of quantum cutting GdF3 : Eu3+ nanoparticles from ionic liquids,” Chem. Commun. (Camb.) 46(4), 571–573 (2010).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

J. Appl. Phys. (1)

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002).
[Crossref]

J. Phys. Chem. C (2)

M. Fujii, T. Nakano, K. Imakita, and S. Hayashi, “Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells,” J. Phys. Chem. C 117(2), 1113–1120 (2013).
[Crossref]

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, “Plasmon-controlled fluorescence: beyond the intensity enhancement,” J. Phys. Chem. Lett. 3(2), 191–202 (2012).
[Crossref]

Nanoscale (2)

P. Yuan, Y. H. Lee, M. K. Gnanasammandhan, Z. Guan, Y. Zhang, and Q.-H. Xu, “Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging,” Nanoscale 4(16), 5132–5137 (2012).
[Crossref] [PubMed]

W. Zhu, D. Chen, L. Lei, J. Xu, and Y. Wang, “An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles,” Nanoscale 6(18), 10500–10504 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

E. He, H. Zheng, J. Dong, W. Gao, Q. Han, J. Li, L. Hui, Y. Lu, and H. Tian, “Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles,” Nanotechnology 25(4), 045603 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

L. Lin, H. Lin, Z. Wang, J. Chen, R. Huang, Z. Feng, and Z. Zheng, “Quantum-cutting of KYF4:Tb3+,Yb3+ under multiple excitations with high Tb3+ concentration,” Opt. Mater. 36(6), 1065–1069 (2014).
[Crossref]

Opt. Mater. Express (2)

Sci. Rep. (1)

Y.-L. Wang, N. M. Estakhri, A. Johnson, H.-Y. Li, Z. Zhang, A. Alù, and C.-K. K. Shih, “Tailoring Plasmonic Enhanced Upconversion in Single NaYF4: Yb3+/Er3+ Nanocrystals,” Sci. Rep. 5, 10196 (2015).
[Crossref]

Science (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Other (1)

Z. Liu, J. Li, L. Yang, Q. Chen, Y. Chu, and N. Dai, “Efficient near-infrared quantum cutting in Ce3+–Yb3+ codoped glass for solar photovoltaic,” Sol. Energ. Mat. Sol. C. 122, 46–50 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Mechanism of plasmon enhanced NIR QC luminescence by Ag NPs.
Fig. 2
Fig. 2 Schematic illustration of the synthesis of β-NaYF4 NPs doped with Ag NPs.
Fig. 3
Fig. 3 (a) UV-Vis absorption spectrum of Ag NPs solution. Inset: Corresponding SEM image of Ag NPs solution. (b) XRD patterns of the β-NaYF4:15%Tb3+, 10%Yb3+ NPs. (c) Corresponding SEM image of the β-NaYF4:15%Tb3+, 10%Yb3+ NPs.
Fig. 4
Fig. 4 (a) SEM image of β-NaYF4:15%Tb3+, 10%Yb3+ NPs doped with 0.5%Ag NPs. (b) Images of X-ray surface scanning analysis of β-NaYF4:15%Tb3+, 10%Yb3+ NPs doped with 0.5%Ag NPs.
Fig. 5
Fig. 5 (a) Excitation spectra (λem = 977nm) and (b) NIR emission spectra (λex = 377nm) of β-NaYF4:15%Tb3+, 10%Yb3+ NPs doped with x%Ag NPs (x = 0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.5, 0.6). Inset: NIR emission intensity vs. Ag concentration. (c) Energy levels diagram of Tb3+, Yb3+ ions in the NIR QC energy transfer.
Fig. 6
Fig. 6 Contours of simulated electric field enhancement (a) L(ωex) and (b) |L(ωex)|2 around one Ag NP excited at 377nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y= | L( ω ex ) | 2 Z( ω em )

Metrics