Abstract

A nanofabrication process for realizing optical nanoantennas carved from a single-crystal gold plate is presented in this paper. The method relies on synthesizing two-dimensional micron-size gold crystals followed by dry etching of a desired antenna layout. The fabrication of single-crystal optical nanoantennas with a standard electron-beam lithography tool and dry etching reactor represents an alternative technological solution to focused ion beam milling of the objects. The process is exemplified by engineering nanorod antennas. Dark-field spectroscopy indicates that optical antennas produced from single crystal flakes have reduced localized surface plasmon resonance losses compared to amorphous designs of similar shape. The present process is easily applicable to other metals such as silver or copper and offers a design flexibility not found in crystalline particles synthesized by colloidal chemistry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral tuning of IR-resonant nanoantennas by nanogap engineering

Daniel Weber, Julia Katzmann, Frank Neubrech, Thomas Härtling, and Annemarie Pucci
Opt. Mater. Express 1(7) 1301-1306 (2011)

Optical scattering resonances of single and coupled dimer plasmonic nanoantennas

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas
Opt. Express 15(26) 17736-17746 (2007)

Nanowire-nanoantenna coupled system fabricated by nanomanipulation

Masaaki Ono, Eiichi Kuramochi, Guoqiang Zhang, Hisashi Sumikura, Yuichi Harada, David Cox, and Masaya Notomi
Opt. Express 24(8) 8647-8659 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
    [Crossref]
  2. S. Kumar, Y.-W. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express 20, 24614 (2012).
    [Crossref] [PubMed]
  3. A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
    [Crossref]
  4. M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
    [Crossref] [PubMed]
  5. J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
    [Crossref]
  6. S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
    [Crossref]
  7. R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 6, 396 (1902).
  8. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. der Physik IV 25, 377–445 (1908).
    [Crossref]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref] [PubMed]
  10. H. A. Atwater, “The Promise of Plasmonics,” Sci. Am. 296, 56–62 (2007).
    [Crossref] [PubMed]
  11. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
    [Crossref]
  12. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [Crossref]
  13. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
    [Crossref] [PubMed]
  14. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [Crossref]
  15. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
    [Crossref]
  16. R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
    [Crossref]
  17. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95 (2014).
    [Crossref]
  18. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Phot. 6, 737–748 (2012).
    [Crossref]
  19. M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
    [Crossref]
  20. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
    [Crossref]
  21. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
    [Crossref] [PubMed]
  22. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
    [Crossref]
  23. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).
  24. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
    [Crossref]
  25. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
    [Crossref] [PubMed]
  26. W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
    [Crossref]
  27. P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
    [Crossref] [PubMed]
  28. E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
    [Crossref]
  29. M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
    [Crossref]
  30. W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
    [Crossref]
  31. R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
    [Crossref]
  32. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
    [Crossref]
  33. Y. Bi and G. Lu, “Morphological controlled synthesis and catalytic activities of gold nanocrystals,” Mater. Lett. 62, 2696 (2008).
    [Crossref]
  34. K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
    [Crossref]
  35. X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).
  36. W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
    [Crossref] [PubMed]
  37. V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
    [Crossref]
  38. M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
    [Crossref] [PubMed]
  39. L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
    [Crossref] [PubMed]
  40. C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
    [Crossref]
  41. L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
    [Crossref] [PubMed]
  42. R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
    [Crossref]
  43. N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).
  44. J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
    [Crossref]
  45. C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15, 1197–1208 (2005).
    [Crossref]
  46. J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
    [Crossref] [PubMed]
  47. D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
    [Crossref]
  48. J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
    [Crossref]
  49. S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
    [Crossref]
  50. A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
    [Crossref] [PubMed]
  51. M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).
  52. A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
    [Crossref]
  53. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
    [Crossref] [PubMed]
  54. S. A. Maier, “Plasmonics: Fundamentals and applications,” SpringerUS (2007).
  55. R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
    [Crossref] [PubMed]
  56. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
    [Crossref] [PubMed]
  57. J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
    [Crossref] [PubMed]
  58. Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
    [Crossref]
  59. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  60. J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
    [Crossref]
  61. C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
    [Crossref]
  62. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
    [Crossref] [PubMed]

2017 (1)

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

2015 (4)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

2014 (11)

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95 (2014).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

2013 (3)

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

2012 (7)

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

S. Kumar, Y.-W. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express 20, 24614 (2012).
[Crossref] [PubMed]

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Phot. 6, 737–748 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

2011 (3)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

2010 (4)

W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

2009 (4)

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
[Crossref]

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Bi and G. Lu, “Morphological controlled synthesis and catalytic activities of gold nanocrystals,” Mater. Lett. 62, 2696 (2008).
[Crossref]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

2007 (2)

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

2006 (4)

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
[Crossref]

2005 (4)

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15, 1197–1208 (2005).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
[Crossref]

2002 (2)

R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

2000 (1)

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
[Crossref]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
[Crossref]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. der Physik IV 25, 377–445 (1908).
[Crossref]

1902 (1)

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 6, 396 (1902).

Acapulco, J. A.

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Adam, P. M.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Ahijado-Guzmán, R.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Ahrach, H. I. E.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Alcorta, A.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Alloyeau, D.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Ammar, S.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Andersen, U. L.

Aravindan, S.

S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
[Crossref]

Arbouet, A.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Arocas, J.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Arriaga, J.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Ashokkumar, M.

R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
[Crossref]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

Aussenegg, F. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Bachelot, R.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Bao, F.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Baudrion, A.-L.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Belkahla, H.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Belmares, S.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Berthelot, J.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Bettiol, A. A.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Beulze, A. L.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Bhavsar, S. N.

S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
[Crossref]

Bi, Y.

Y. Bi and G. Lu, “Morphological controlled synthesis and catalytic activities of gold nanocrystals,” Mater. Lett. 62, 2696 (2008).
[Crossref]

Biagioni, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
[Crossref]

Bigeon, J. L.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

Bouhelier, A.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Brida, D.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Caruso, R. A.

R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
[Crossref]

Chan, V. Z.-H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Chang, W.

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

Chang, Y.-M.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

Chen, L.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Chen, W.-L.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95 (2014).
[Crossref]

Coello, V.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Colas des Francs, G.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Coronado-Puchau, M.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

Cuche, A.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

Cutler, J. I.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

Dachraoui, W.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

de la Chapelle, M. L.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

de Roo, T.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Demichel, O.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

Dereux, A.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

des Francs, G. C.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Ding, Y.

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

Ditlbacher, H.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Dostálek, J.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

DuanMu, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Duguet, E.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Dujardin, E.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Duley, W. W.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Eisler, H.-J.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

Elizondo, N.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

El-Sayed, M. A.

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

Ersen, O.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Feichtner, T.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Finot, E.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Fischer, M. P.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
[Crossref]

Gazeau, F.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Geier, S.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Geisler, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Giner-Casares, J. J.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

Girard, C.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Gomez, D.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Grand, J.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Gregori, G.

W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
[Crossref]

Grieser, F.

R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
[Crossref]

Griesser, H.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Griesser, H. J.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Grimault, A. S.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Gu, N.

K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
[Crossref]

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Guo, Z.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Guo, Z. R.

K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
[Crossref]

Halas, N. J. N. J.

M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Hartland, G. V.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Hatanpää, T.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

He, L.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Hecht, B.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

Hecker, N. E.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Henkel, A.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Hernàndez, F.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
[Crossref]

Hong, S.

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Hu, A.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Huang, C.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Huang, C.-J.

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Huang, J.-S.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Huang, W.

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

Huck, A.

Hurst, S. J.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

Hwang, N. M.

J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
[Crossref]

Ilin, K. S.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

Im, J.

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Jang, H.-J.

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Javed, Y.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Ji, F.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Josephs, E. A.

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Kamp, M.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Phot. 6, 737–748 (2012).
[Crossref]

Kern, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Kildishev, A. V.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

Kim, D.-Y.

J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
[Crossref]

Knittel, V.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Kostcheev, S.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Krenn, J. R.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Kulkarni, A. S.

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Kumar, S.

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Lamprecht, B.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Langer, J.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

Langille, M. R.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

Lecoq, H.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Lee, C.

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

Lee, J.-W.

J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
[Crossref]

Lee, Y.-Y.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

Lei, W.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Leitenstorfer, A.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Lemmer, U.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

Leskelä, M.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Li, F.-C.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

Lin, F.-C.

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

Lindqyist, N. C.

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

Liz-Marzàn, L. M.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

Lofton, C.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15, 1197–1208 (2005).
[Crossref]

Lu, G.

Y. Bi and G. Lu, “Morphological controlled synthesis and catalytic activities of gold nanocrystals,” Mater. Lett. 62, 2696 (2008).
[Crossref]

Lu, Y.-W.

Luo, X.

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

Maier, S. A.

S. A. Maier, “Plasmonics: Fundamentals and applications,” SpringerUS (2007).

Majimel, J.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Mäkelä, M.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Margueritat, J.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Markey, L.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

Martinez, W. E.

W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
[Crossref]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Mates, T.

W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Mecking, S.

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

Meinander, K.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Méjard, R.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
[Crossref]

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Métraux, G. S.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Mi, Y.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. der Physik IV 25, 377–445 (1908).
[Crossref]

Millstone, J. E.

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
[Crossref]

Mirkin, C. A.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
[Crossref]

Mizohata, K.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Möller, M.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Mornet, S.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

Mulvaney, P.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Nagpal, P.

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

Nordlander, P.

M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

Novo, C.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
[Crossref]

Obregón, R.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Oh, S.-H.

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

Ould Agha, Y.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

Paraguay, F.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Park, S.

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Perez-Juste, J.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Personick, M. L.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

Petrova, H.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Plain, J.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Polman, A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Prangsma, J. C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Prasad, J.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Qian, W.

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

Räisänen, J.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Rao, P. V.

S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
[Crossref]

Ravaine, S.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Reismann, M.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Ricolleau, C.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Ritala, M.

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Ritchie, J.

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

Rivas, G.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Rosman, C.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Royer, P.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Scarabelli, L.

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

Schneider, D.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Segovia, P.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Shalaev, V. M.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

Shao, J.

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

Sharma, J.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Siegel, M.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

Sigmund, W.

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15, 1197–1208 (2005).
[Crossref]

Song, M.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Sönnichsen, C.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Spatz, J. P.

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Stolz, A.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Sun, B.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Sun, J.

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

Teng, J. H.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Teo, E. J.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Thierry, B.

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
[Crossref]

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Tome, L.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

Torres, E.

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

Toyoda, N.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Tréguer-Delapierre, M.

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

Vial, A.

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Viarbitskaya, S.

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Wang, B.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Wang, G.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Wang, W.

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Wang, Z. L.

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

Weeber, J.-C.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Wiederrecht, G. P.

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Wisnet, A.

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Wissert, M. D.

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

Wood, R.

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 6, 396 (1902).

Wu, X.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Xie, S.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
[Crossref]

Xu, H.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Xu, K.

K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
[Crossref]

Xu, L.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Xu, Y.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Xue, X.-J.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Yang, C.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Ye, T.

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Phot. 6, 737–748 (2012).
[Crossref]

Zhang, D.

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Zhang, J.

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

Zhang, N.

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Zhang, Q.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Zhang, T.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Zhang, X.

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

Zhang, X.-Y.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Zhang, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

Zhang, Z.

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Zhou, Y.

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

ACS Nano (3)

W.-L. Chen, F.-C. Lin, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, and J.-S. Huang, “The modulation effect of transverse, antibonding, and higher-order longitudinal modes on the two-photon photoluminescence of gold plasmonic nanoantennas,” ACS Nano 8, 9053 (2014).
[Crossref] [PubMed]

V. Knittel, M. P. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894 (2015).
[Crossref]

L. Scarabelli, M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzàn, “Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced raman scattering,” ACS Nano 8, 5833–5842 (2014).
[Crossref] [PubMed]

ACS Phot. (2)

X.-Y. Zhang, A. Hu, T. Zhang, W. Lei, X.-J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Phot. 5, 9082 (2011).

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Phot. 2, 236 (2015).

Adv. Funct. Mater. (2)

C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater. 15, 1197–1208 (2005).
[Crossref]

J. E. Millstone, G. S. Métraux, and C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater. 16, 1209–1214 (2006).
[Crossref]

Ann. der Physik IV (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. der Physik IV 25, 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (2)

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93, 113110 (2008).
[Crossref]

C. Sönnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949–2951 (2000).
[Crossref]

Bull. Korean Chem. Soc (1)

S. Hong, J. A. Acapulco, H.-J. Jang, A. S. Kulkarni, and S. Park, “Kinetically controlled growth of gold nanoplates and nanorods via a one-step seed-mediated method,” Bull. Korean Chem. Soc 6, 1737–1742 (2014).
[Crossref]

Chin. Chem. Lett. (1)

K. Xu, Z. R. Guo, and N. Gu, “Facile synthesis of gold nanoplates by thermally reducing aucl4− with aniline,” Chin. Chem. Lett. 20, 241 (2009).
[Crossref]

Colloids Surf. A: Physicochem. Eng. Asp. (1)

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf. A: Physicochem. Eng. Asp. 278, 33–38 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

M. R. Langille, M. L. Personick, J. Zhang, and C. A. Mirkin, “Defining rules for the shape evolution of gold nanoparticles,” J. Am. Chem. Soc. 134, 14542 (2012).
[Crossref] [PubMed]

J. Cryst. Growth (1)

J.-W. Lee, N. M. Hwang, and D.-Y. Kim, “Growth morphology of perfect and twinned face-centered-cubic crystals by monte carlo simulation,” J. Cryst. Growth 250, 538–545 (2003).
[Crossref]

J. Phys. Chem. B (1)

A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109, 3195 (2005).
[Crossref]

J. Phys. Chem. C (2)

C. Lee, E. A. Josephs, J. Shao, and T. Ye, “Nanoscale chemical patterns on gold microplates,” J. Phys. Chem. C 1126, 17625–17632 (2012).
[Crossref]

W. Huang, W. Qian, M. A. El-Sayed, Y. Ding, and Z. L. Wang, “Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles,” J. Phys. Chem. C 111, 10751 (2007).
[Crossref]

J. Vis. Exp. (1)

M. Song, A. Stolz, D. Zhang, J. Arocas, L. Markey, G. C. des Francs, E. Dujardin, and A. Bouhelier, “Evaluating plasmonic transport in current-carrying silver nanowires,” J. Vis. Exp. 82, e514048 (2013).

Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films (1)

M. Mäkelä, T. Hatanpää, M. Ritala, M. Leskelä, K. Mizohata, K. Meinander, and J. Räisänen, “Potential gold(i) precursors evaluated for atomic layer deposition,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 01B112 (2017).
[Crossref]

Langmuir (2)

R. A. Caruso, M. Ashokkumar, and F. Grieser, “Sonochemical formation of gold sols,” Langmuir 18, 7831–7836 (2002).
[Crossref]

A. L. Beulze, E. Duguet, S. Mornet, J. Majimel, M. Tréguer-Delapierre, S. Ravaine, and O. Ersen, “New insights into the side-face structure, growth aspects and reactivity of agn nanoprisms,” Langmuir 30, 1424–1434 (2014).
[Crossref] [PubMed]

Mater. Lett. (1)

Y. Bi and G. Lu, “Morphological controlled synthesis and catalytic activities of gold nanocrystals,” Mater. Lett. 62, 2696 (2008).
[Crossref]

Nano Lett. (6)

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916 (2010).
[Crossref] [PubMed]

M. D. Wissert, K. S. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, “Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation,” Nano Lett. 10, 4161 (2010).
[Crossref] [PubMed]

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14, 5528–5532 (2014).
[Crossref] [PubMed]

J. Berthelot, A. Bouhelier, C. Huang, J. Margueritat, G. Colas des Francs, E. Finot, J.-C. Weeber, A. Dereux, S. Kostcheev, H. I. E. Ahrach, A.-L. Baudrion, J. Plain, R. Bachelot, P. Royer, and G. P. Wiederrecht, “Tuning of an optical dimer nanoantenna by electrically controlling its load impedance,” Nano Lett. 9, 3914–3921 (2009).
[Crossref] [PubMed]

L. Chen, F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang, “High-yield seedless synthesis of triangular gold nanoplates through oxidative etching,” Nano Lett. 14, 7201–7206 (2014).
[Crossref] [PubMed]

D. Alloyeau, W. Dachraoui, Y. Javed, H. Belkahla, G. Wang, H. Lecoq, S. Ammar, O. Ersen, A. Wisnet, F. Gazeau, and C. Ricolleau, “Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy,” Nano Lett. 150, 2574–2581 (2015).
[Crossref]

Nanosc. (1)

E. J. Teo, N. Toyoda, C. Yang, B. Wang, N. Zhang, A. A. Bettiol, and J. H. Teng, “Enhanced plasmonic performance in ultrathin silver structures using gas cluster ion beam irradiation,” Nanosc. 6, 3243 (2014).
[Crossref]

Nat. Comm. (1)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Comm. 1, 150 (2010).
[Crossref]

Nat. Commun (1)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun 2, 387 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95 (2014).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Nature Mat. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nature Mat. 12, 426–432 (2013).
[Crossref]

Nature Nanotech. (1)

M. L. Brongersma, N. J. N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nature Nanotech. 10, 25–34 (2015).
[Crossref]

Nature Phot. (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nature Phot. 6, 737–748 (2012).
[Crossref]

Opt. Express (1)

Opt. Mat. (1)

R. Méjard, J. Dostálek, C.-J. Huang, H. Griesser, and B. Thierry, “Tuneable and robust long range surface plasmon resonance for biosensing applications,” Opt. Mat. 35, 2507 (2013).
[Crossref]

Philos. Mag. (1)

R. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 6, 396 (1902).

Phys. Chem. Chem. Phys. (1)

C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contribution rom radiation damping and surface scaterring to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).
[Crossref] [PubMed]

Phys. Rev. B (2)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Phys. Rev. Lett (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett 79, 645–648 (1997).
[Crossref]

Phys. Rev. Lett. (2)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
[Crossref] [PubMed]

Plasmonics (1)

J. Grand, P. M. Adam, A. S. Grimault, A. Vial, M. L. de la Chapelle, J. L. Bigeon, S. Kostcheev, and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory,” Plasmonics 1, 135–140 (2006).
[Crossref]

Precis. Eng. (2)

J. Sun, X. Luo, J. Ritchie, W. Chang, and W. Wang, “An investigation of redeposition effect for deterministic fabrication of nanodots by focused ion beam,” Precis. Eng. 36, 31 (2012).
[Crossref]

S. N. Bhavsar, S. Aravindan, and P. V. Rao, “Experimental investigation of redeposition during focused ion beam milling of high speed steel,” Precis. Eng. 36, 408 (2012).
[Crossref]

Prog. Electro. Res (1)

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electro. Res 146, 77–88 (2014).
[Crossref]

Sci. Am. (1)

H. A. Atwater, “The Promise of Plasmonics,” Sci. Am. 296, 56–62 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Cuche, S. Viarbitskaya, J. Sharma, A. Arbouet, C. Girard, and E. Dujardin, “Modal engineering of surface plasmons in apertured au nanoprisms,” Sci. Rep. 5, 16635 (2014).
[Crossref]

Science (3)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[Crossref] [PubMed]

P. Nagpal, N. C. Lindqyist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594 (2009).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333 (2011).
[Crossref] [PubMed]

Sens. Actu. B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actu. B 54, 3 (1999).
[Crossref]

Small (1)

J. E. Millstone, S. J. Hurst, G. S. Métraux, J. I. Cutler, and C. A. Mirkin, “Colloidal gold and silver triangular nanoprisms,” Small 5, 646–664 (2009).
[Crossref] [PubMed]

Thin Sol. Films (1)

W. E. Martinez, G. Gregori, and T. Mates, “Titanium diffusion in gold thin films,” Thin Sol. Films 518, 2585 (2010).
[Crossref]

Trends Anal. Chem. (1)

R. Méjard, H. J. Griesser, and B. Thierry, “Optical biosensing for label-free cellular studies,” Trends Anal. Chem. 53, 178 (2014).
[Crossref]

Other (2)

N. Elizondo, P. Segovia, V. Coello, J. Arriaga, S. Belmares, A. Alcorta, F. Hernàndez, R. Obregón, E. Torres, and F. Paraguay, “Green synthesis and characterizations of silver and gold nanoparticles,” Green Chemistry - Environmentally Benign Approaches pp. 139–156 (2012).

S. A. Maier, “Plasmonics: Fundamentals and applications,” SpringerUS (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematics of the growth process involved in the 2D Au plate synthesis. Gold atoms are reduced through a first redox reaction to form small nanospheres. Those presenting twinned planes may evolve into two-dimensional micron-sized plates by atom binding to specific sides through a second redox reaction when aniline is added. (b) SEM image showing the typical output of a colloidal synthesis of gold plates and by-products (nanospheres). The plates are essentially triangles with various truncated tips. The image is taken with an acceleration voltage of 15 kV for a magnification of × 2700. The solution is dried on a Si substrate for imaging purpose.
Fig. 2
Fig. 2 2D plate characterization. (a). TEM image of a Au plate. The microscope operates under an accelerating voltage of 200 kV. (b) Selected area electron diffraction pattern of the TEM image revealing a monocrystalline structure. (c) Fast Fourier Transform of a high-resolution image of a nanoplate (not presented here) indicating the crystalline orientation. (d) AFM image of a 2D plate.
Fig. 3
Fig. 3 Monocrystalline nanoantenna fabrication steps. First, large Cr landmarks are fabricated on the substrate by electron-beam lithography (I–III). Then the Au plates are drop cast on the grid (III). The sample is recovered with PMMA resist for a second electron-beam lithography step (IV). A Ni mask is deposited and the PMMA is lifted off (V–VI). The metals are then etched by reactive-ion etching throughout the Au plate thickness (VII). Last, the remaining Ni mask is removed by a selective wet etching to reveal the optical nanoantennas (IIX).
Fig. 4
Fig. 4 Localization of the plates and report of its coordinates to the design desk. (a) Optical micrograph used to determines the coordinates of the plate P1, P2 and P3 with respect to the grid landmark. (b) Reporting of the plate’s layout on the design desk used to draw the optical antennas (red features inside the plate).
Fig. 5
Fig. 5 Monocrystalline nanoantenna arrays: (a) SEM image of nanoantenna rods carved out of a large monocrystal with the inset showing a close-up view (the bar represents 1 μm). The image is obtained with an acceleration voltage of 2 kV to avoid charging effect at a magnification of × 2180. (b) and (c) dark field images with polarization oriented longitudinally and transversally to the rods, respectively. The bright triangular shapes are landmarks used for alignment purposes.
Fig. 6
Fig. 6 Dark-field optical images showing a series of nanorod antenna of varying length fabricated from parent Au plates of different shapes. The polarization is aligned with the long axis of the nanorods.
Fig. 7
Fig. 7 (a) Dark field scattering spectra for short nanoantennas. The peaks are normalized by taking into account the spectral response of the spectrograph. (b) Evolution of the linewidth measured by the full-width-at-half-maximum of the dipolar resonance versus the resonance energy extracted from (a) (opened circles). Open and filled diamonds: data points obtained from lithographed Au nanorods resonating in the energy range discussed here; respectively extracted from [60] and fabricated in our facility. The solid line is the computed evolution using tabulated gold’s permittivity. The dashed line represents the trend obtained by canceling the imaginary part of the permittivity, retaining thus only the radiative contribution to the linewidth.

Metrics