Abstract

Arsenic doped p-type ZnO films are prepared by the photo-assisted metal organic chemical vapor deposition method. Using the photo-assisted technique, the acceptor activation process is simplified. The arsenic doping level, which decides the carrier distribution, could be controlled by changing the thickness of the pre-deposited GaAs layer. The crystal and optical quality of the ZnO films is good. The acceptor is AsZn–2VZn. Its ionization energy could be slightly reduced by increasing the arsenic doping level. This finding is very helpful to improve the hole concentration. Our experiments provide a new method to grow high performance p-type ZnO based photoelectric devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Growth of arsenic doped ZnO films using a finite surface doping source by metal organic chemical vapor deposition

Tian-Hong Feng and Xiao-Chuan Xia
Opt. Mater. Express 6(12) 3733-3740 (2016)

Investigation on the p-type formation mechanism of nitrogen ion implanted ZnO thin films induced by rapid thermal annealing

Zheng Huang, Haibo Ruan, Hong Zhang, Dongping Shi, Wanjun Li, Guoping Qin, Fang Wu, Liang Fang, and Chunyang Kong
Opt. Mater. Express 9(7) 3098-3108 (2019)

Optical fingerprints of donors and acceptors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Yang Shen, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(4) 1169-1179 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Allabergenov, S. H. Chung, S. M. Jeong, S. J. Kim, and B. Choi, “Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films,” Opt. Mater. Express 3(10), 1733–1741 (2013).
    [Crossref]
  2. Z. P. Yang, Z. H. Xie, C. C. Lin, and Y. J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399 (2015).
    [Crossref]
  3. G. Nam, M. S. Kim, J. Kim, S. O. Kim, and J. Y. Leem, “Regrowth method for the enhancement in the photoluminescence, UV photoresponse, and electrical properties of n-ZnO:Sn films,” Opt. Mater. Express 6(1), 220–229 (2015).
  4. V. Manthina and A. G. Agrios, “Band edge engineering of composite photoanodes for dye-sensitized solar cells,” Electrochim. Acta 169, 416–423 (2015).
    [Crossref]
  5. Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
    [Crossref]
  6. S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
    [Crossref]
  7. J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
    [Crossref]
  8. X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
    [Crossref]
  9. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
    [Crossref]
  10. U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
    [Crossref]
  11. F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, and D. Fan, “A reproducible route to p-ZnO films and their application in light-emitting devices,” Opt. Lett. 36(4), 499–501 (2011).
    [Crossref] [PubMed]
  12. A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
    [Crossref]
  13. I. Y. Y. Bu, “Formation of novel homojunction device using p-type ZnO:Co shell coating on n-type ZnO nanowires,” J. Mater. Sci. Mater. Electron. 25(12), 5277–5281 (2014).
    [Crossref]
  14. S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
    [Crossref]
  15. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
    [Crossref]
  16. Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
    [Crossref]
  17. T. H. Feng and X. C. Xia, “The growth of arsenic doped ZnO films using finite surface doping source by metal organic chemical vapor deposition,” Opt. Mater. Express 6(12), 3733–3740 (2016).
    [Crossref]
  18. S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
    [Crossref] [PubMed]
  19. P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
    [Crossref]
  20. W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
    [Crossref]
  21. C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
    [Crossref]
  22. H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
    [Crossref]
  23. S. H. Kim, S. H. Lee, B. Dudem, and J. S. Yu, “Fabrication and optical characterization of hybrid antireflective structures with zinc oxide nanorods/micro pyramidal silicon for photovoltaic applications,” Opt. Mater. Express 6(12), 4000–4009 (2016).
    [Crossref]
  24. Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
    [Crossref]
  25. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
    [Crossref]
  26. X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
    [Crossref]

2016 (5)

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

T. H. Feng and X. C. Xia, “The growth of arsenic doped ZnO films using finite surface doping source by metal organic chemical vapor deposition,” Opt. Mater. Express 6(12), 3733–3740 (2016).
[Crossref]

S. H. Kim, S. H. Lee, B. Dudem, and J. S. Yu, “Fabrication and optical characterization of hybrid antireflective structures with zinc oxide nanorods/micro pyramidal silicon for photovoltaic applications,” Opt. Mater. Express 6(12), 4000–4009 (2016).
[Crossref]

2015 (3)

2014 (1)

I. Y. Y. Bu, “Formation of novel homojunction device using p-type ZnO:Co shell coating on n-type ZnO nanowires,” J. Mater. Sci. Mater. Electron. 25(12), 5277–5281 (2014).
[Crossref]

2013 (2)

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

B. Allabergenov, S. H. Chung, S. M. Jeong, S. J. Kim, and B. Choi, “Enhanced blue photoluminescence realized by copper diffusion doping of ZnO thin films,” Opt. Mater. Express 3(10), 1733–1741 (2013).
[Crossref]

2011 (1)

2010 (1)

J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
[Crossref]

2009 (1)

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

2008 (1)

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

2006 (3)

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

2005 (1)

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

2004 (4)

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

2003 (1)

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

2001 (1)

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

1976 (1)

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Agrios, A. G.

V. Manthina and A. G. Agrios, “Band edge engineering of composite photoanodes for dye-sensitized solar cells,” Electrochim. Acta 169, 416–423 (2015).
[Crossref]

Ahn, B. D.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Allabergenov, B.

Baji, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Banerji, P.

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Bársony, I.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Basa, P.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Bayliss, C. R.

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Biswas, P.

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Bu, I. Y. Y.

I. Y. Y. Bu, “Formation of novel homojunction device using p-type ZnO:Co shell coating on n-type ZnO nanowires,” J. Mater. Sci. Mater. Electron. 25(12), 5277–5281 (2014).
[Crossref]

Campbell, H. I.

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Cavenett, B. C.

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Chang, H. W.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Chen, A.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Chen, M.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Choi, B.

Chung, S. H.

Clauzonnier, A.

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Correia, J. G.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Czigány, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Decoster, S.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Dee, C. F.

J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
[Crossref]

Du, X. L.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Dudem, B.

Fan, D.

Feng, T. H.

Gui, X.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

He, H. P.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Hwang, D. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Jeong, M. C.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Jeong, S. M.

Jiang, J.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Kang, H. S.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Karamde, J.

J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
[Crossref]

Kim, B.-J.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Kim, D. L.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Kim, G. H.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Kim, H. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Kim, J.

Kim, K. K.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Kim, M. S.

Kim, S. H.

Kim, S. J.

Kim, S. O.

Kirk, D. L.

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Kundu, S.

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

Lee, S. H.

Lee, S. Y.

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Lee, T. S.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Lee, W.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Lee, Y. J.

Leem, J. Y.

Li, B. H.

Li, J.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Li, M.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Lim, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Limpijumnong, S.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Lin, C. C.

Look, D. C.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Lubguban, J. A.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Majlis, B. Y.

J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
[Crossref]

Manthina, V.

V. Manthina and A. G. Agrios, “Band edge engineering of composite photoanodes for dye-sensitized solar cells,” Electrochim. Acta 169, 416–423 (2015).
[Crossref]

Mei, Z. X.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Mendonça, T.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Myoung, J. M.

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Nam, G.

Oh, J. Y.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Pan, X. H.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Pan, X. Q.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Park, C. H.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Park, S. J.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Park, Y. S.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Park, Y.-S.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Prior, K. A.

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Ryu, Y.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Ryu, Y. R.

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Shan, C. X.

Shen, D. Z.

Shirolkar, M. M.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Sun, F.

Sun, H. P.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Szabó, Z.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Tang, X.

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Tang, Z.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Volk, J.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Wahl, U.

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

Wang, H.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Wang, H. Y.

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Wei, S. H.

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Wei, S.-H.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

White, H. W.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

Wu, Y.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Xia, X. C.

Xie, Z. H.

Xue, Q. K.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Yang, J. H.

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

Yang, Z. P.

Ye, Z. Z.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Yin, S.

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Youn, C.-J.

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

Yu, J. S.

Zeng, Y. J.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zeng, Z. Q.

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Zhang, S. B.

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Zhang, Z. Y.

Zhang, Z. Z.

Zhao, B. H.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zhu, H.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Zhu, L. P.

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

Zhu, Y.

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Zunger, A.

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Acta Mater. (1)

W. Lee, M. C. Jeong, and J. M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Mater. 52(13), 3949–3957 (2004).
[Crossref]

Adv. Funct. Mater. (1)

A. Chen, H. Zhu, Y. Wu, M. Chen, Y. Zhu, X. Gui, and Z. Tang, “Beryllium-Assisted p-Type Doping for ZnO Homojunction Light-Emitting Devices,” Adv. Funct. Mater. 26(21), 3696–3702 (2016).
[Crossref]

Appl. Phys. Lett. (8)

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, and C.-J. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 88(24), 241108 (2006).
[Crossref]

H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee, “Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film,” Appl. Phys. Lett. 89(18), 181103 (2006).
[Crossref]

U. Wahl, J. G. Correia, T. Mendonça, and S. Decoster, “Direct evidence for Sb as a Zn site impurity in ZnO,” Appl. Phys. Lett. 94(26), 261901 (2009).
[Crossref]

H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, “Microstructure and crystal defects in epitaxial ZnO film grown on Ga modified (0001) sapphire surface,” Appl. Phys. Lett. 85(19), 4385–4387 (2004).
[Crossref]

Y. R. Ryu, T. S. Lee, and H. W. White, “Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition,” Appl. Phys. Lett. 83(1), 87–89 (2003).
[Crossref]

D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 86(15), 151917 (2005).
[Crossref]

X. Tang, A. Clauzonnier, H. I. Campbell, K. A. Prior, and B. C. Cavenett, “Electrical characterization of zinc oxide thin films by electrochemical capacitance–voltage profiling,” Appl. Phys. Lett. 84(16), 3043–3045 (2004).
[Crossref]

Appl. Surf. Sci. (2)

J. Karamde, C. F. Dee, and B. Y. Majlis, “Characterization and aging effect study of nitrogen-doped ZnO nanofilm,” Appl. Surf. Sci. 256(21), 6164–6167 (2010).
[Crossref]

Z. Szabó, Z. Baji, P. Basa, Z. Czigány, I. Bársony, H. Y. Wang, and J. Volk, “Homogeneous transparent conductive ZnO:Ga by ALD for large LED wafers,” Appl. Surf. Sci. 379, 304–308 (2016).
[Crossref]

Electrochim. Acta (1)

V. Manthina and A. G. Agrios, “Band edge engineering of composite photoanodes for dye-sensitized solar cells,” Electrochim. Acta 169, 416–423 (2015).
[Crossref]

J. Alloys Compd. (1)

P. Biswas, S. Kundu, and P. Banerji, “A study on electrical transport vis-à-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300K,” J. Alloys Compd. 552, 304–309 (2013).
[Crossref]

J. Appl. Phys. (1)

X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 103(2), 023708 (2008).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

I. Y. Y. Bu, “Formation of novel homojunction device using p-type ZnO:Co shell coating on n-type ZnO nanowires,” J. Mater. Sci. Mater. Electron. 25(12), 5277–5281 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. R. Bayliss and D. L. Kirk, “The compositional and structural changes that accompany the thermal annealing of (100) surfaces of GaAs, InP and GaP in vacuum,” J. Phys. D Appl. Phys. 9(2), 233–244 (1976).
[Crossref]

Mater. Lett. (1)

S. Yin, J. Li, M. M. Shirolkar, M. Li, and H. Wang, “Oxygen interstitial mediated effective doping of Al in ZnO:Al films prepared by magnetron sputtering,” Mater. Lett. 179, 146–149 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (5)

Phys. Rev. B (1)

S. B. Zhang, S. H. Wei, and A. Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B 63(7), 075205 (2001).
[Crossref]

Phys. Rev. Lett. (1)

S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide,” Phys. Rev. Lett. 92(15), 155504 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XPS spectrum of As-3d core level of the ZnO films.
Fig. 2
Fig. 2 XRD patterns of the ZnO films.
Fig. 3
Fig. 3 PL spectra of the ZnO films at 10K, the inset shows the normalized results at room temperature.
Fig. 4
Fig. 4 Capacitance versus measurement voltage for different ZnO samples with 0.1 M ZnCl2 electrolyte.
Fig. 5
Fig. 5 C−2 versus measurement voltage for different ZnO samples.
Fig. 6
Fig. 6 Carrier concentration profile for different ZnO samples etched with 0.1 M ZnCl2.

Metrics