Abstract

A graphene-coated polarizer based on the surface silicon-core microfiber has been proposed and numerically analyzed. The numerical discussion shows that our proposed polarizer serves alternatively as TM-pass or TE-pass polarizers depending on the change of the radius of the silicon core. Their polarization extinction ratios can be adjusted by the structure parameters of the ellipticity, the major and minor diameter of the microfiber, and the thickness of the graphene film. When the length of the graphene film is 1.5 mm, extinction ratios of ~30 and ~32 dB can be respectively achieved at the wavelength of 1.55 μm for TM-pass and TE-pass polarizers. The operation wavelength range of the TM- and TE-pass polarizer could cover ~400 and ~1000 nm, respectively. Our proposed polarizer provides a flexible way to manipulate the polarization of the light in the fiber and highly integrated optical fiber system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double D-shaped hole optical fiber coated with graphene as a polarizer

Shanshan Chen, Fengjun Tian, Li Li, Hongkun Qu, Zhenlan Su, and Jianzhong Zhang
Appl. Opt. 57(27) 7659-7666 (2018)

Si-core photonic crystal fiber transverse-electric pass polarizer

Jideofor A. H. Odoeze, Mohamed Farhat O. Hameed, Hossam M. H. Shalaby, and Salah S. A. Obayya
J. Opt. Soc. Am. B 35(5) 980-986 (2018)

High extinction ratio D-shaped fiber polarizers coated by a double graphene/PMMA stack

Rang Chu, Chunying Guan, Jing Yang, Zheng Zhu, Ping Li, Jinhui Shi, Peixuan Tian, Libo Yuan, and Gilberto Brambilla
Opt. Express 25(12) 13278-13285 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Sunnerud, M. Karlsson, C. Xie, and P. A. Andrekson, “Polarization-mode dispersion in high-speed fiber-optic transmission systems,” J. Lightwave Technol. 20(12), 2204–2219 (2002).
    [Crossref]
  2. D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
    [Crossref] [PubMed]
  3. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [Crossref]
  4. H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15(10), 1357–1359 (2003).
    [Crossref]
  5. T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
    [Crossref]
  6. Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).
  7. H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
    [Crossref]
  8. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  9. J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
    [Crossref] [PubMed]
  10. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010).
    [Crossref] [PubMed]
  11. S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
    [Crossref]
  12. D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5(2), 66–67 (2011).
    [Crossref]
  13. B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
    [Crossref]
  14. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
    [Crossref]
  15. L. Yang, T. Hu, R. Hao, C. Qiu, C. Xu, H. Yu, Y. Xu, X. Jiang, Y. Li, and J. Yang, “Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide,” Opt. Lett. 38(14), 2512–2515 (2013).
    [Crossref] [PubMed]
  16. G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
    [Crossref]
  17. C. Guan, L. Yuan, F. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29(19), 3004–3008 (2011).
    [Crossref]

2015 (1)

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

2013 (1)

2012 (4)

J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
[Crossref] [PubMed]

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

2011 (3)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5(2), 66–67 (2011).
[Crossref]

C. Guan, L. Yuan, F. Tian, and Q. Dai, “Characteristics of near-surface-core optical fibers,” J. Lightwave Technol. 29(19), 3004–3008 (2011).
[Crossref]

2010 (2)

P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

2008 (1)

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

2006 (1)

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

2003 (2)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

2002 (1)

1987 (1)

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Al-Jabr, A.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Andrekson, P. A.

Arzi, E.

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

Badding, J. V.

Ballato, J.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Baril, N. F.

Boyraz, O.

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Brown, R. G.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Burka, L.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Choi, C. G.

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Cullen, D. C.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Dai, Q.

Dimitrophoulos, D.

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Esmaeilzadeh, H.

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

Farrel, G.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Foy, P.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Graham-Rowe, D.

D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5(2), 66–67 (2011).
[Crossref]

Guan, C.

Hanson, G. W.

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

Hao, R.

Hassani, A.

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

Hawkins, T.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Healy, N.

Homola, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Hu, T.

Hudson, J.

Jalali, B.

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Jiang, X.

Karlsson, M.

Khan, M. Z. M.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Kim, J. T.

Li, B.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Li, Y.

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lowe, C. R.

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Manikova, Z.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Mcmillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Mehta, P.

Morris, S.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Mozafari, M.

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

Ng, T. K.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Ooi, B. S.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

Peacock, A. C.

Piliarik, M.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Qiu, C.

Raghunathan, V.

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Rice, R.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Sang, X.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Sazio, P. J. A.

Semenova, Y.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Stolen, R.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fiber,” Opt. Mater. Express 2(11), 1511–1519 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Su, H. C.

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

Sunnerud, H.

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tian, F.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, L. A.

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wu, Q.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Xie, C.

Xu, C.

Xu, Y.

Yan, B.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Yang, J.

Yang, L.

Yazgan-Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Yu, C.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Yu, H.

Yuan, J.

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Yuan, L.

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhu, L.

Biosensors (1)

D. C. Cullen, R. G. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1987).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, V. Raghunathan, D. Dimitrophoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. C. Su and L. A. Wang, “A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications,” IEEE Photonics Technol. Lett. 15(10), 1357–1359 (2003).
[Crossref]

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photonics Technol. Lett. 24(9), 724–726 (2012).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (2)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5(2), 66–67 (2011).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. Mcmillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16(6), 399–408 (2010).
[Crossref]

Opt. Laser Technol. (1)

Y. Ma, G. Farrel, Y. Semenova, B. Li, J. Yuan, B. Li, J. Yuan, X. Sang, B. Yan, C. Yu, and Q. Wu, “Optical microfiber-loaded surface plasmonic TE-pass polarizer,” Opt. Laser Technol. 78, 110–114 (2015).

Opt. Lett. (1)

Opt. Mater. Express (1)

Sens. Actuators A Phys. (1)

H. Esmaeilzadeh, E. Arzi, M. Mozafari, and A. Hassani, “A broadband optical fiber based inline polarizer for telecom wavelength range,” Sens. Actuators A Phys. 185, 59–65 (2012).
[Crossref]

Sens. Actuators B Chem. (1)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic cross section of the polarizer, where r is the radius of the silicon core. a and b is respectively the major and minor diameter of the microfiber. n1 = 1.4378, n2 = 3.4784.
Fig. 2
Fig. 2 (a) Birefringence as a function of the radius of the silicon core with different ellipticity. (b) Extinction ratio versus the radius of the silicon core with different ellipticity. (c) Birefringence as a function of the radius of the silicon core with different major and minor diameter. (d) Extinction ratio versus the radius of the silicon core with different major and minor diameter.
Fig. 3
Fig. 3 The electric field distribution on the cross section of the SSCM polarizer with surface-covered graphene film for TE and TM mode light at the radius of the silicon core of 0.132 μm ((a) and (b)) and 0.17 μm ((d) and (e)). (c) The amplitudes of the electric field as a function of x coordinate axis along y = 1μm at the silicon core radius of 0.132μm, a = 4 μm and b = 2 μm. (f) The intensity of the electric field as a function of y coordinate axis along x = 0 at the silicon core radius of 0.17 μm, a = 4 μm and b = 2 μm.
Fig. 4
Fig. 4 The effect of the ellipticity, major and minor diameter on the birefringence and propagation loss for TE and TM modes. (a) and (b) for r = 0.132 μm, (c) and (d) for r = 0.17 μm.
Fig. 5
Fig. 5 The effect of the graphene thickness on the birefringence and propagation loss for TE and TM modes. (a) r = 0.132 μm and (b) r = 0.17 μm.
Fig. 6
Fig. 6 Propagation losses of TE and TM modes against the wavelength (a) r = 0.132 μm and (b) r = 0.17 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

× H = j ω ε r ε 0 E + σ E
× E = j ω μ 0 H
a tan ( C a ) + a tan ( C b ) + m π = γ 2 d
ε 3 = 1 Im ( σ ) ω ε 0 d g + i Re ( σ ) ω ε 0 d g
σ ( ω , μ c , Γ , T ) = j e 2 ( ω j τ -1 ) π [ 1 ( ω j τ -1 ) 2 0 ε ( f d ( ε ) ε f d ( ε ) ε ) d ε 0 f d ( ε ) f d ( ε ) ( ω j 2 Γ ) 2 4 ( ε / ) 2 d ε ]
α = Im ( n e f f ) k 0
E = ( α T E α T M ) L g

Metrics