Abstract

We demonstrate joining polymethyl methacrylate (PMMA) substrates by a dendrite pattern of a quenched melt using ultrashort laser pulses. Laser pulses from a 250-fs fiber laser at a repetition rate of 1 MHz were focused at the interface of the two PMMA substrates with an air gap of approximately 14 μm and direct laser joining was accomplished between two pieces of PMMA. Melted PMMA from the laser-irradiated region spread within a gap between the substrates and dendrite morphology of the melt spread outside the direct laser irradiated area of square spiral contour and increased the joining strength. The joint strength was 11 MPa for tensile and 21 MPa for the shear stress. Ultrashort laser pulses are useful to directly join PMMA substrates using localized melting and resolidification with a gap between the substrates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interface modification based ultrashort laser microwelding between SiC and fused silica

Guodong Zhang, Jing Bai, Wei Zhao, Kaiming Zhou, and Guanghua Cheng
Opt. Express 25(3) 1702-1709 (2017)

Welding of PMMA by a femtosecond fiber laser

Annalisa Volpe, Francesca Di Niso, Caterina Gaudiuso, Andrea De Rosa, Rebeca Martínez Vázquez, Antonio Ancona, Pietro Mario Lugarà, and Roberto Osellame
Opt. Express 23(4) 4114-4124 (2015)

Reinforced direct bonding of optical materials by femtosecond laser welding

David Hélie, Michael Bégin, Fabrice Lacroix, and Réal Vallée
Appl. Opt. 51(12) 2098-2106 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
    [Crossref] [PubMed]
  2. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [Crossref] [PubMed]
  3. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
    [Crossref]
  4. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [Crossref] [PubMed]
  5. J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
    [Crossref]
  6. W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
    [Crossref] [PubMed]
  7. P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
    [Crossref]
  8. H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
    [Crossref]
  9. D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010).
    [Crossref]
  10. C. Kelb, W. M. Pätzold, U. Morgner, M. Rahlves, E. Reithmeier, and B. Roth, “Characterization of femtosecond laser written gratings in PMMA using a phase-retrieval approach,” Opt. Mater. Express 6(10), 3202–3209 (2016).
    [Crossref]
  11. K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
    [Crossref]
  12. O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
    [Crossref]
  13. D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
    [Crossref] [PubMed]
  14. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [Crossref]
  15. W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
    [Crossref]
  16. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
    [Crossref]
  17. S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
    [Crossref]
  18. T. Tamaki, T. Inoue, W. Watanabe, Y. Ozeki, and K. Itoh, “Laser micro-welding of dissimilar materials using femtosecond laser pulses,” presented at the eighth International Symposium on Laser Precision Microfabrication, Vienna, Austria, 24–28 April 2007.
  19. A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
    [Crossref] [PubMed]
  20. G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
    [Crossref]
  21. S. Akamatsu and H. Nguyen-Thib, “In situ observation of solidification patterns in diffusive conditions,” Acta Mater. 108, 325–346 (2016).
    [Crossref]
  22. A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
    [Crossref]
  23. L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
    [Crossref] [PubMed]
  24. J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
    [Crossref]
  25. J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
    [Crossref]
  26. S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
    [Crossref]
  27. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
    [Crossref]
  28. X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
    [Crossref]

2016 (7)

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
[Crossref]

S. Akamatsu and H. Nguyen-Thib, “In situ observation of solidification patterns in diffusive conditions,” Acta Mater. 108, 325–346 (2016).
[Crossref]

W. M. Pätzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41(6), 1269–1272 (2016).
[Crossref] [PubMed]

C. Kelb, W. M. Pätzold, U. Morgner, M. Rahlves, E. Reithmeier, and B. Roth, “Characterization of femtosecond laser written gratings in PMMA using a phase-retrieval approach,” Opt. Mater. Express 6(10), 3202–3209 (2016).
[Crossref]

2015 (2)

A. Volpe, F. Di Niso, C. Gaudiuso, A. De Rosa, R. M. Vázquez, A. Ancona, P. M. Lugarà, and R. Osellame, “Welding of PMMA by a femtosecond fiber laser,” Opt. Express 23(4), 4114–4124 (2015).
[Crossref] [PubMed]

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

2013 (1)

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

2012 (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

2011 (1)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

2010 (1)

2009 (1)

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

2008 (1)

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

2006 (4)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

2004 (1)

2003 (2)

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
[Crossref]

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

2000 (1)

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

1999 (1)

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

1994 (1)

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

1993 (1)

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Akamatsu, S.

S. Akamatsu and H. Nguyen-Thib, “In situ observation of solidification patterns in diffusive conditions,” Acta Mater. 108, 325–346 (2016).
[Crossref]

Alshehri, A. M.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Alti, K.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Ancona, A.

Andrzejewski, L.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Arenholz, E.

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Bäuerle, D.

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Bernard, R.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Bhardwaj, R.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Bhatnagar, A.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Börzsönyi, T.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Chandrasekar, S.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Cox, G.

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

De Rosa, A.

Demircan, A.

Desai, N. R.

Dharmadhikari, A. K.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Dharmadhikari, J. A.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Di Niso, F.

Döring, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Douglas, J. F.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Ezoe, R.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Ferreiro, V.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Gaudiuso, C.

Ghods, A.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Gránásy, L.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Hagemeyer, A.

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Heitz, J.

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Hellmann, R.

G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
[Crossref]

Hibst, H.

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

Hirono, S.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Itoh, K.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Jaroszynski, D. A.

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
[Crossref]

Jiang, X.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Jones, D.

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
[Crossref]

Juodkazis, S.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Kallepalli, D. L. N.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010).
[Crossref]

Kasuya, M.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Kelb, C.

Khajehpour, M. R. H.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Kitamura, Y.

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

Klose, S.

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

Kolahchi, M. R.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Li, Y.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

Lopez, C.

Lugarà, P. M.

Manabe, T.

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

Marquez, D. T.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Mathur, D.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Matoba, O.

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

Matsuda, K.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Matsuo, S.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Misawa, H.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Mochizuki, H.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Morgner, U.

Mostafavi-Amjad, J.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Nahal, A.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Nguyen-Thib, H.

S. Akamatsu and H. Nguyen-Thib, “In situ observation of solidification patterns in diffusive conditions,” Acta Mater. 108, 325–346 (2016).
[Crossref]

Nishii, J.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Nitta, K.

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

Nolte, S.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Osellame, R.

Ozeki, Y.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

Pätzold, W. M.

Pusztai, T.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Rahlves, M.

Reihani, S. N. S.

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

Reinhardt, C.

Reithmeier, E.

Richardson, K.

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29(16), 1840–1842 (2004).
[Crossref] [PubMed]

Richter, S.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Roth, B.

Roth, G.-L.

G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
[Crossref]

Rung, S.

G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
[Crossref]

Santhosh, C.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Scaiano, J. C.

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Schilcher, K.

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

Scully, P. J.

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
[Crossref]

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Soma, V. R.

Sowa, S.

Sun, H.-B.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Tamaki, T.

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Thomas, J.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Tünnermann, A.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

Vázquez, R. M.

Volpe, A.

Wang, C.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Warren, J. A.

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Watanabe, M.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Watanabe, W.

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

Yamasaki, K.

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

Zimmermann, F.

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

Zoubir, A.

Acta Mater. (1)

S. Akamatsu and H. Nguyen-Thib, “In situ observation of solidification patterns in diffusive conditions,” Acta Mater. 108, 325–346 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Mochizuki, W. Watanabe, R. Ezoe, T. Tamaki, Y. Ozeki, K. Itoh, M. Kasuya, K. Matsuda, and S. Hirono, “Density characterization of femtosecond laser modification in polymers,” Appl. Phys. Lett. 92(9), 091120 (2008).
[Crossref]

K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76(8), 1000–1002 (2000).
[Crossref]

O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, and W. Watanabe, “Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses,” Appl. Phys. Lett. 95(22), 221114 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process. 103(2), 257–261 (2011).
[Crossref]

J. Heitz, E. Arenholz, D. Bäuerle, H. Hibst, A. Hagemeyer, and G. Cox, “Dendritic surface structures on excimer-laser irradiated PET foils,” Appl. Phys., A Mater. Sci. Process. 56(4), 329–333 (1993).
[Crossref]

S. Klose, E. Arenholz, J. Heitz, and D. Bäuerle, “Laser-induced dendritic structures on PET (polyethylene- terephthalate): the importance of redeposited ablation products,” Appl. Phys., A Mater. Sci. Process. 69(7), S487–S490 (1999).
[Crossref]

G.-L. Roth, S. Rung, and R. Hellmann, “Welding of transparent polymers using femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 122(2), 86 (2016).
[Crossref]

Appl. Surf. Sci. (1)

J. Heitz, E. Arenholz, D. Bäuerle, and K. Schilcher, “Growth of excimer-laser-induced dendritic surface structures on polyethylene-terephthalate,” Appl. Surf. Sci. 81(1), 103–106 (1994).
[Crossref]

J. Appl. Phys. (1)

A. Nahal, J. Mostafavi-Amjad, A. Ghods, M. R. H. Khajehpour, S. N. S. Reihani, and M. R. Kolahchi, “Laser-induced dendritic microstructures on the surface of Ag+-doped glass,” J. Appl. Phys. 100(5), 053503 (2006).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

P. J. Scully, D. Jones, and D. A. Jaroszynski, “Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings,” J. Opt. A, Pure Appl. Opt. 5(4), S92–S96 (2003).
[Crossref]

Jpn. J. Appl. Phys. (2)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Nat. Mater. (1)

L. Gránásy, T. Pusztai, J. A. Warren, J. F. Douglas, T. Börzsönyi, and V. Ferreiro, “Growth of ‘dizzy dendrites’ in a random field of foreign particles,” Nat. Mater. 2(2), 92–96 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, C. Santhosh, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304, 29–38 (2013).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (3)

S. Richter, F. Zimmermann, A. Tünnermann, and S. Nolte, “Laser welding of glasses at high repetition rates – Fundamentals and prospects,” Opt. Laser Technol. 83, 59–66 (2016).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 µm thulium fiber laser,” Opt. Laser Technol. 44(7), 2095–2099 (2012).
[Crossref]

W. Watanabe, Y. Li, and K. Itoh, “Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
[Crossref]

Opt. Lasers Eng. (1)

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Sci. Rep. (1)

D. L. N. Kallepalli, A. M. Alshehri, D. T. Marquez, L. Andrzejewski, J. C. Scaiano, and R. Bhardwaj, “Ultra-high density optical data storage in common transparent plastics,” Sci. Rep. 6(1), 26163 (2016).
[Crossref] [PubMed]

Other (1)

T. Tamaki, T. Inoue, W. Watanabe, Y. Ozeki, and K. Itoh, “Laser micro-welding of dissimilar materials using femtosecond laser pulses,” presented at the eighth International Symposium on Laser Precision Microfabrication, Vienna, Austria, 24–28 April 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Top views of structural modifications in PMMA at various energies and speeds.
Fig. 2
Fig. 2 Dependence of structural modifications on pulse energies and speeds.
Fig. 3
Fig. 3 (a) Schematic diagram of laser micro-joining of two substrates with an air gap. (b) Translation method of stages with respect to the focal point. (c) Top view of welding volumes fabricated at a speed of 1 mm/s. (d) Two jointed PMMA substrates. The top PMMA substrate was picked up using tweezers.
Fig. 4
Fig. 4 (a), (b) Optical transmission image of a cleaved PMMA surface after joining of PMMA substrates. (c), (d) Height distribution of a cleaved PMMA surfaces shown in (a) and (b) obtained with a confocal laser scanning microscope. Dendrite morphology was observed outside laser irradiated area. Inset in the top shows a schematic for observation of cleaved surface. (e), (f) Perspective view of dendrite morphology of cleaved surface in (c) and (d). Inset shows pseudo-color height distribution.
Fig. 5
Fig. 5 Optical images of a cleaved PMMA surface after welding of PMMA substrates. Dendrite morphology was observed outside laser irradiated area, which was calculated using image processing. Inset shows the schematic area for laser irradiated area and dendrite morphology from side.

Metrics