Abstract

We demonstrate an environment-friendly solvent treatment that leads to a dramatic performance improvement of perovskite solar cells, with power conversion efficiency as high as 18%, with good stability. The solvent not only improves perovskite film morphology and crystallinity, but also, at proper growth conditions, leads to the formation of a self-induced textured structure on a dense layer; this increases the interface area between the perovskite active layer and the hole transport layer and thus improves photo generated current density. These results may open a new path to low-cost and high efficiency perovskite solar cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved photovoltaic properties of nominal composition CH3NH3Pb0.99Zn0.01I3 carbon-based perovskite solar cells

Xiang-Yu Zhu, Meng-Wei Chen, Bao Wang, Nan Liu, Mei-Qing Ran, Hao Yang, and Ying-Ping Yang
Opt. Express 26(26) A984-A995 (2018)

Ruthenium acetylacetonate in interface engineering for high performance planar hybrid perovskite solar cells

Wei Chen, Shiqiang Luo, Zunyuan Wan, Xiyuan Feng, Xinke Liu, and Zhubing He
Opt. Express 25(8) A253-A263 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
    [Crossref] [PubMed]
  2. C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
    [Crossref] [PubMed]
  3. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
    [Crossref] [PubMed]
  4. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
    [Crossref] [PubMed]
  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref] [PubMed]
  6. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).
  7. S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
    [Crossref] [PubMed]
  8. Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
    [Crossref] [PubMed]
  9. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref] [PubMed]
  10. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
    [Crossref]
  11. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
    [Crossref] [PubMed]
  12. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
    [Crossref] [PubMed]
  13. M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
    [Crossref] [PubMed]
  14. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
    [Crossref]
  15. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
    [Crossref] [PubMed]
  16. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
    [Crossref]
  17. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
    [Crossref] [PubMed]
  18. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
    [Crossref] [PubMed]
  19. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
    [Crossref] [PubMed]
  20. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
    [Crossref] [PubMed]
  21. C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive,” Nanoscale 6(17), 9935–9938 (2014).
    [Crossref] [PubMed]
  22. Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-Step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C 118(18), 9412–9418 (2014).
    [Crossref]
  23. C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
    [Crossref]
  24. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
    [Crossref] [PubMed]
  25. X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
    [Crossref]
  26. J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
    [Crossref]
  27. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
    [Crossref] [PubMed]
  28. B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
    [Crossref] [PubMed]
  29. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
    [Crossref] [PubMed]
  30. I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
    [Crossref]
  31. T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
    [Crossref]
  32. Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
    [Crossref]
  33. H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
    [Crossref]
  34. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
    [Crossref] [PubMed]
  35. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
    [Crossref]
  36. J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
    [Crossref] [PubMed]

2017 (1)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

2016 (5)

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

2015 (5)

C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

2014 (16)

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive,” Nanoscale 6(17), 9935–9938 (2014).
[Crossref] [PubMed]

Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-Step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C 118(18), 9412–9418 (2014).
[Crossref]

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

2013 (4)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

2012 (2)

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

1996 (1)

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

1976 (1)

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Ahmad, S.

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

Ahn, N.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Ahn, T. K.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Alcocer, M. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Bach, U.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Baldwin, A.

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

Bi, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Bi, D.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Bi, E.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Burlakov, V. M.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Cai, M.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Chang, J.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Chang, W.-H.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Chen, D.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Chen, Q.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Chen, W.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Cheng, Y.-B.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Chiang, C.-H.

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

Cho, A. N.

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

Choi, M.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Chu, Q.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Chueh, C. C.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Décoppet, J.-D.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Ding, B.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Ding, L.

C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive,” Nanoscale 6(17), 9935–9938 (2014).
[Crossref] [PubMed]

Dkhissi, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Docampo, P.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

Dong, Q.

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Duan, H.-S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Ehrler, B.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

El-Mellouhi, F.

C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
[Crossref] [PubMed]

Eperon, G. E.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Etheridge, J.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Fan, B.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Gao, L.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Gao, P.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Gao, Y.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Garnett, E. C.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Goriely, A.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

Gramstad, T.

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Grätzel, M.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Gray-Weale, A.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Hagfeldt, A.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

Han, H. J.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Han, L.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Hao, Y.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Heo, J. H.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Herberholz, R.

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Hong, Z.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Huang, F.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Huang, J.

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Huang, W.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

Humphry-Baker, R.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Im, J.-H.

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Im, S. H.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Islam, A.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Jang, I. H.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Jang, I.-H.

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

Jarvis, P.

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

Jen, A. K. Y.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Jeon, N. J.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Jiang, C.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Johnston, M. B.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Kang, S. M.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Kazim, S.

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

Kim, D.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Kim, H.-S.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Kim, J. H.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Kim, S. Y.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Kim, Y. C.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Knight, M.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Lee, C.-R.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Lee, J. W.

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

Lee, K.-B.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Lee, T. W.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Li, C.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Li, G.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Li, X.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Li, Y.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Liang, L.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Liang, P. W.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Liao, C. Y.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Lin, J.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Lin, Z.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Ling, Q.

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

Liu, M.

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

Liu, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Lu, G.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Lu, X.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Luo, J.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Luo, S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Ma, X.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

Makhija, R.

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Mandal, T. N.

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Marchioro, A.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Meng, L.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Moehl, T.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Moon, S.-J.

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Moser, J. E.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Motta, C.

C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
[Crossref] [PubMed]

Müller, C.

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

Nazeeruddin, M. K.

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Noh, J. H.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Onyszchuk, M.

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Park, N. G.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

Park, N.-G.

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Pellet, N.

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Polman, A.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Ryu, S.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Sanvito, S.

C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
[Crossref] [PubMed]

Schock, H. W.

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

Seo, J.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

Seok, S. I.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Seol, D. J.

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

Shao, Y.

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Shin, H. W.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Sinke, W. C.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Snaith, H. J.

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Son, D. Y.

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

Song, D. H.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Song, T.-B.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Song, X.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Spiccia, L.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Sun, X.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Tang, S.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

Tseng, Z.-L.

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

Walter, T.

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

Wang, C.

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Wang, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

Wang, H.-H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Wang, M.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Wharf, I.

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Williams, S. T.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Wolf, C.

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Wu, C.-G.

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

Wu, Y.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Xi, H.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Xiao, M.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Xiao, Z.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Xie, F.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Xin, X. K.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

Yang, G.

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

Yang, H.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Yang, W. S.

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Yang, X.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Yang, Y.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Yang, Y. M.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Yi, C.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

You, J.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Yuan, Y.

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

Yue, Y.

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Yum, J.-H.

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

Zakeeruddin, S. M.

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Zhang, C.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Zhang, J.

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Zhao, Y.

Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-Step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C 118(18), 9412–9418 (2014).
[Crossref]

Zhong, P.

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

Zhou, H.

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

Zhu, K.

Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-Step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C 118(18), 9412–9418 (2014).
[Crossref]

Zhu, Y.

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

Zuo, C.

C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive,” Nanoscale 6(17), 9935–9938 (2014).
[Crossref] [PubMed]

Zuo, F.

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

B. Ding, L. Gao, L. Liang, Q. Chu, X. Song, Y. Li, G. Yang, B. Fan, M. Wang, C. Li, and C. Li, “Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method,” ACS Appl. Mater. Interfaces 8(31), 20067–20073 (2016).
[Crossref] [PubMed]

ACS Omega (1)

H. Xi, S. Tang, X. Ma, J. Chang, D. Chen, Z. Lin, P. Zhong, H. Wang, and C. Zhang, “Performance enhancement of planar heterojunction perovskite solar cells through tuning the doping properties of hole-transporting materials,” ACS Omega 2(1), 326–336 (2017).
[Crossref]

Adv. Funct. Mater. (1)

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells,” Adv. Funct. Mater. 24(1), 151–157 (2014).
[Crossref]

Adv. Mater. (4)

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater. 26(22), 3748–3754 (2014).
[Crossref] [PubMed]

J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, and S. H. Im, “Solar Cells: planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate,” Adv. Mater. 27(22), 3424–3430 (2015).
[Crossref] [PubMed]

Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref] [PubMed]

J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2 PbI3.,” Adv. Mater. 26(29), 4991–4998 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014).
[Crossref] [PubMed]

S. Kazim, M. K. Nazeeruddin, M. Grätzel, and S. Ahmad, “Perovskite as light harvester: a game changer in photovoltaics,” Angew. Chem. Int. Ed. Engl. 53(11), 2812–2824 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. You, Y. M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Can. J. Chem. (1)

I. Wharf, T. Gramstad, R. Makhija, and M. Onyszchuk, “Synthesis and vibrational spectra of some lead(I1) halide adducts with 0-, S-, and N-donor atom ligands,” Can. J. Chem. 54(21), 3430–3438 (1976).
[Crossref]

Energy Environ. Sci. (4)

C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, and M. Grätzel, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy Environ. Sci. 8(9), 2725–2733 (2015).
[Crossref]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution process,” Energy Environ. Sci. 7(7), 2359–2365 (2014).
[Crossref]

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci. 7(8), 2619 (2014).
[Crossref]

J. Am. Chem. Soc. (3)

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref] [PubMed]

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref] [PubMed]

N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, “Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide,” J. Am. Chem. Soc. 137(27), 8696–8699 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Walter, R. Herberholz, C. Müller, and H. W. Schock, “Introductory chapter: introduction to infrared spectroscopy,” J. Appl. Phys. 80, 4411–4420 (1996).
[Crossref]

J. Phys. Chem. C (1)

Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted one-Step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells,” J. Phys. Chem. C 118(18), 9412–9418 (2014).
[Crossref]

Nano Energy (1)

X. Sun, C. Zhang, J. Chang, H. Yang, H. Xi, G. Lu, D. Chen, Z. Lin, X. Lu, J. Zhang, and Y. Hao, “Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement,” Nano Energy 28, 417–425 (2016).
[Crossref]

Nano Lett. (1)

J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells,” Nano Lett. 13(4), 1764–1769 (2013).
[Crossref] [PubMed]

Nanoscale (1)

C. Zuo and L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive,” Nanoscale 6(17), 9935–9938 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Nat. Energy (1)

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, and L. Han, “Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering,” Nat. Energy 1(11), 16148 (2016).
[Crossref]

Nat. Mater. (1)

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,” Nat. Mater. 13(9), 897–903 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nat. Nanotechnol. 9(11), 927–932 (2014).
[Crossref] [PubMed]

Nature (3)

M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature 501(7467), 395–398 (2013).
[Crossref] [PubMed]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature 517(7535), 476–480 (2015).
[Crossref] [PubMed]

J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep. 2, 591 (2012).
[Crossref] [PubMed]

C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep. 5(1), 12746 (2015).
[Crossref] [PubMed]

Science (4)

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science 352, 307 (2016).

Q. Ling, W. Huang, A. Baldwin, and P. Jarvis, “Efficient hybrid solar cells based on Meso-Superstructured organometal halide perovskites,” Science 338, 655–659 (2012).
[Crossref] [PubMed]

X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, “A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells,” Science 353(6294), 58–62 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Perovskite solar cell structure, schematic of perovskite film processing, and film morphology. (a) Schematic of cell structure, (b) Fabrication progress. (c-f) SEM images ofperovskite layers obtained from processes (1- 4). Scale bar in (c) is 10 μm, and in (d), (e), (f) are 5 μm.
Fig. 2
Fig. 2 SEM images of perovskite films with different solvent treatments. (a-c) Top-view SEM images of films obtained with CB, TL, and EA solvent treatments, respectively (scale bars, 5 μm). (d-f) High magnification SEM images of the (a-c) samples, correpondingly (all scale bars, 1 μm). (g-i) Side-view, (a-c) cross-sectional SEM images of the samples (all scale bars, 400 nm).
Fig. 3
Fig. 3 FTIR and XRD spectra. (a) FTIR spectrum of DMSO (liquid), PbI2·DMSO (powder), MAI·PbI2·DMSO (powder), and (b) zoom-in finger print region for the S = O vibrations. XRD spectrum of perovskite film before (c) and after (d) thermal annealed for CB, TL, EA dripping treatment respectively.
Fig. 4
Fig. 4 PV performance. (a) J−V curves for different solvent-treatment based solar cells. Data were collected at reversed scan under one sun (AM 1.5G) illumination. (b) External quantum efficiency (EQE) spectrum (left) together with EQE date-based integrated Jsc for different perovskite solar cells (right). (c−f) Distribution histograms of Jsc (c), Voc (d), FF (e), and PCE (f) of the 62 independently fabricated EA cells.
Fig. 5
Fig. 5 Temporal stability of present CB, TL and EA-based perovskite cells. Plots of (a) Voc, (b) Jsc, (c) FF and (d) PCE versus time, measured in air with < 40% humidity and without encapsulation.
Fig. 6
Fig. 6 Steady state PL spectra (a), and time resolved PL (TRPL) (b), of various perovskite films obtained with CB, TL, and EA dripping treatments. (c) Frequency dependences of capacitance for perovskite solar cells with different solvent dripping treatment. (d) The trap density of state (t-DOS) distribution derived from Frequency dependences of capacitance measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N T   ( E ω ) = V b i q W d C d ω ω k B T
E ( ω ) = k B T l n ω o ω

Metrics