Abstract

PbS quantum dots (QDs) with a mean radii of 1.27 nm to 7.32 nm were precipitated in alkaline-earth silicate glasses enriched in sulfur. A transmission electron microscope image and absorption spectra evidenced the narrow size dispersion of PbS QDs and discrete energy levels of PbS QDs. Upon above-band-gap excitation, symmetry of the photoluminescence from PbS QDs was strongly dependent on their size. Photoluminescence from small PbS QDs showed a long-wavelength tail and vice versa for large PbS QDs. The size dependence of full width at half maximum, PL energy and Stokes shift on the size of PbS QDs suggested that the electron/hole trap states of PbS QDs and the defects states on the interface between PbS QDs and glass matrix have great effect on the photoluminescence properties of PbS QDs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses

Yuda Xiong, Chao Liu, Jing Wang, Jianjun Han, and Xiujian Zhao
Opt. Express 25(6) 6874-6882 (2017)

Formation of core/shell PbS/Na2SrSi2O6 nanocrystals in glass

Wufeng Xiao, Kai Xu, Chao Liu, Jing Wang, Zhiyong Zhao, Jun Xie, Jianjun Han, Xiujian Zhao, and Jong Heo
Opt. Mater. Express 6(2) 578-586 (2016)

Direct evidence on the energy transfer of near-infrared emission in PbS quantum dot-doped glass

Haipeng Wang, Guobo Wu, Jianrong Qiu, and Guoping Dong
Opt. Express 23(13) 16723-16729 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [Crossref] [PubMed]
  2. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
    [Crossref] [PubMed]
  3. R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
    [Crossref]
  4. L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
    [Crossref]
  5. A. M. Malyarevich, V. G. Savitsji, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev, “Glass doped with PbS quantum dots as a saturable absorber for 1-µm neodymium lasers,” J. Opt. Soc. Am. B 19(1), 28–32 (2002).
    [Crossref]
  6. A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, “Glass doped with PbS quantum dots for passive Q switching of a 1.54- microm laser,” Appl. Opt. 39(24), 4345–4347 (2000).
    [Crossref] [PubMed]
  7. M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
    [Crossref]
  8. I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass,” Opt. Lett. 34(21), 3403–3405 (2009).
    [Crossref] [PubMed]
  9. P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
    [Crossref]
  10. A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
    [Crossref]
  11. F. Yue, J. W. Tomm, D. Kruschke, P. Glas, K. A. Bzheumikhov, and Z. Ch. Margushev, “PbS:glass as broad-bandwidth near-infrared light source material,” Opt. Express 21(2), 2287–2296 (2013).
    [Crossref] [PubMed]
  12. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
    [Crossref]
  13. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
    [Crossref] [PubMed]
  14. M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
    [Crossref] [PubMed]
  15. J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
    [Crossref] [PubMed]
  16. D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
    [Crossref] [PubMed]
  17. I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
    [Crossref] [PubMed]
  18. J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
    [Crossref]
  19. J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
    [Crossref] [PubMed]
  20. G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
    [Crossref] [PubMed]
  21. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
    [Crossref] [PubMed]
  22. C. Liu and J. Heo, “Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices,” Int. J. Appl. Glass Sci. 4(3), 163–173 (2013).
    [Crossref]
  23. N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
    [Crossref]
  24. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
    [Crossref] [PubMed]
  25. J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
    [Crossref] [PubMed]
  26. A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).
  27. D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
    [Crossref]
  28. T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
    [Crossref]
  29. T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
    [Crossref]
  30. L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
    [Crossref]
  31. C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
    [Crossref]
  32. N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
    [Crossref]
  33. E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
    [Crossref]
  34. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
    [Crossref]
  35. I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997).
    [Crossref]
  36. Y. Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An application,” J. Phys. Chem. 95(13), 3591–3597 (1991).
    [Crossref]
  37. R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
    [Crossref]
  38. C. Liu and J. Heo, “Band Gap and Diameter Modulation of Quantum Dots in Glasses,” Int. J. Appl. Glass Sci. 6(4), 329–338 (2015).
    [Crossref]
  39. N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
    [Crossref]
  40. C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
    [Crossref]
  41. S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
    [Crossref]
  42. R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
    [Crossref] [PubMed]
  43. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
    [Crossref] [PubMed]
  44. S. V. Gaponenko, “Optical properties of semiconductor nanocrystals, (Chapter 3, in the series of) Cambridge Studies in Modern Optics,” Cambridge University Press, United Kingdom, 55–61 (1998).
  45. N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
    [Crossref] [PubMed]
  46. B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
    [Crossref]
  47. E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
    [Crossref] [PubMed]
  48. J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
    [Crossref] [PubMed]
  49. J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
    [Crossref] [PubMed]
  50. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
    [Crossref] [PubMed]
  51. J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
    [Crossref] [PubMed]
  52. E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
    [Crossref] [PubMed]
  53. A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
    [Crossref] [PubMed]
  54. N. B. Pendyala and K. S. R. Koteswara Rao, “Identification of surface states in PbS quantum dots by temperature dependent photoluminescence,” J. Lumin. 128(11), 1826–1830 (2008).
    [Crossref]
  55. E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
    [Crossref]

2017 (2)

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

2016 (2)

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

2015 (4)

N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
[Crossref]

C. Liu and J. Heo, “Band Gap and Diameter Modulation of Quantum Dots in Glasses,” Int. J. Appl. Glass Sci. 6(4), 329–338 (2015).
[Crossref]

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

2014 (2)

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

2013 (5)

C. Liu and J. Heo, “Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices,” Int. J. Appl. Glass Sci. 4(3), 163–173 (2013).
[Crossref]

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

F. Yue, J. W. Tomm, D. Kruschke, P. Glas, K. A. Bzheumikhov, and Z. Ch. Margushev, “PbS:glass as broad-bandwidth near-infrared light source material,” Opt. Express 21(2), 2287–2296 (2013).
[Crossref] [PubMed]

2012 (1)

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

2011 (3)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

2010 (3)

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
[Crossref] [PubMed]

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

2009 (3)

I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass,” Opt. Lett. 34(21), 3403–3405 (2009).
[Crossref] [PubMed]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

2008 (3)

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

N. B. Pendyala and K. S. R. Koteswara Rao, “Identification of surface states in PbS quantum dots by temperature dependent photoluminescence,” J. Lumin. 128(11), 1826–1830 (2008).
[Crossref]

2007 (1)

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[Crossref]

2006 (6)

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
[Crossref]

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

2005 (1)

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

2004 (2)

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

2003 (3)

R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

2002 (2)

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
[Crossref]

A. M. Malyarevich, V. G. Savitsji, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev, “Glass doped with PbS quantum dots as a saturable absorber for 1-µm neodymium lasers,” J. Opt. Soc. Am. B 19(1), 28–32 (2002).
[Crossref]

2000 (3)

A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, “Glass doped with PbS quantum dots for passive Q switching of a 1.54- microm laser,” Appl. Opt. 39(24), 4345–4347 (2000).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

1999 (1)

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

1998 (1)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

1997 (3)

I. Kang and F. W. Wise, “Electronic structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632–1646 (1997).
[Crossref]

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

1996 (1)

R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
[Crossref]

1991 (1)

Y. Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An application,” J. Phys. Chem. 95(13), 3591–3597 (1991).
[Crossref]

1987 (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Adam, J. L.

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Alivisatos, P.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Allan, G.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Amassian, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

An, J. M.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[Crossref]

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

Andreeva, O. V.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

Artemyev, M.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Asbury, J. B.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Avila, T. R.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Babaev, A. A.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

Baffa, O.

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Bakueva, L.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Baranov, A. V.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Baranov, M. A.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

Barbosa, L. C.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

Bashouti, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Bastús, N. G.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Bawendi, M. G.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Beecher, A. N.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Bertram, S. N.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Berwick, K.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

Beyler, A. P.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Bischof, T. S.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Borchert, H.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Borrelli, N. F.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Brito Cruz, C. H.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

Britt, D.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Brokmann, X.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Bronstein, N.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Brown, C. T. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Brumer, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Bulovic, V.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Burshtein, Z.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Butty, J.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Bzheumikhov, K. A.

Cademartiri, L.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Calestani, G.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

Campos, M. P.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Cao, J.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Caram, J. R.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Carr, J. A.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Cesar, C. L.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

Cha, D.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Chang, T. W. F.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Chauhan, V. P.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Chen, O.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Chen, Y.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Chou, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Cleary, L.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Cleveland, G. T.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Cohen, R. E.

R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
[Crossref]

Comenge, J.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Cordero, J. M.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Coropceanu, I.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Correa, R. E.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Cui, J.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

da Silva, S. W.

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Dantas, N. O.

N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
[Crossref]

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Dauler, E. A.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

De Geyter, B.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

De Muynck, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Debnath, R.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Delerue, C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Denisov, I. A.

Dudiy, S. V.

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Fedorov, A. V.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Feldman, L. C.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

Fernandes, G. L.

N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
[Crossref]

Fischer, A.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Franceschetti, A.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[Crossref]

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

FreitasNeto, E. S.

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Fukumura, D.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Furukawa, M.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Galun, E.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Gaponenko, M. S.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass,” Opt. Lett. 34(21), 3403–3405 (2009).
[Crossref] [PubMed]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Glas, P.

Gómez, J. A.

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Guagliardi, A.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Guyot-Sionnest, P.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
[Crossref]

Han, H.-S.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Han, J.

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

Han, N.

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

Harris, D. K.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Haustraete, K.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Heathcote, S. L.

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Hendricks, M. P.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Hens, Z.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Heo, J.

C. Liu and J. Heo, “Band Gap and Diameter Modulation of Quantum Dots in Glasses,” Int. J. Appl. Glass Sci. 6(4), 329–338 (2015).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

C. Liu and J. Heo, “Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices,” Int. J. Appl. Glass Sci. 4(3), 163–173 (2013).
[Crossref]

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

Hess, W. R.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Hickey, S. G.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Hines, M. A.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

Hirano, A.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Hoogland, S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Houtepen, A. J.

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Hwang, G. W.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Ikeda, F.

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

Jabbour, G. E.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Jain, R. K.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Jeong, K. S.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Jiang, X. J.

J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
[Crossref] [PubMed]

Jiang, Y.

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

Justo, Y.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

Kane, R. S.

R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
[Crossref]

Kang, I.

Kasowski, R.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Kemp, K. W.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Kigel, A.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Kim, D.

D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
[Crossref]

Kisel, V. E.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Klimov, V. I. J.

R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Koole, R.

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Koteswara Rao, K. S. R.

N. B. Pendyala and K. S. R. Koteswara Rao, “Identification of surface states in PbS quantum dots by temperature dependent photoluminescence,” J. Lumin. 128(11), 1826–1830 (2008).
[Crossref]

Kruschke, D.

Kuleshov, N. V.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

Kuwabara, T.

D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
[Crossref]

Kwon, Y. K.

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

Lagatsky, A. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Lambert, K.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Le Quang, A. Q.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Leburn, C. G.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Ledoux-Rak, I.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Levina, L.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Lewis, J. E.

J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
[Crossref] [PubMed]

Lifshitz, E.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Lipovskii, A. A.

Litvin, A. P.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Liu, C.

C. Liu and J. Heo, “Band Gap and Diameter Modulation of Quantum Dots in Glasses,” Int. J. Appl. Glass Sci. 6(4), 329–338 (2015).
[Crossref]

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

C. Liu and J. Heo, “Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices,” Int. J. Appl. Glass Sci. 4(3), 163–173 (2013).
[Crossref]

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

Liu, H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Lobo, A.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Mahler, W.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Malyarevich, A. M.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass,” Opt. Lett. 34(21), 3403–3405 (2009).
[Crossref] [PubMed]

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

A. M. Malyarevich, V. G. Savitsji, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev, “Glass doped with PbS quantum dots as a saturable absorber for 1-µm neodymium lasers,” J. Opt. Soc. Am. B 19(1), 28–32 (2002).
[Crossref]

A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, “Glass doped with PbS quantum dots for passive Q switching of a 1.54- microm laser,” Appl. Opt. 39(24), 4345–4347 (2000).
[Crossref] [PubMed]

Margushev, Z. Ch.

Marshall, L. F.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Martins, J. C.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Matsuo, N.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

McBride, J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

Meijerink, A.

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Micic, O. I.

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

Migliori, A.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Miyoshi, T.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

Möller, T.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Montanari, E.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

Morais, P. C.

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Moreels, I.

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Musikhin, S.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Nagai, T.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

Nagata, J.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

Nagel, M.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Nakayama, M.

D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
[Crossref]

Neves, A. A. R.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

Nitta, K.

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

Nollet, T.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Nosaka, Y.

Y. Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An application,” J. Phys. Chem. 95(13), 3591–3597 (1991).
[Crossref]

Nozik, A. J.

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

Ohkuni, H.

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

Onushchenko, A. A.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

Owen, J. S.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Ozin, G. A.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

Padilha, L. A.

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

Parfenov, P. S.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Pendyala, N. B.

N. B. Pendyala and K. S. R. Koteswara Rao, “Identification of surface states in PbS quantum dots by temperature dependent photoluminescence,” J. Lumin. 128(11), 1826–1830 (2008).
[Crossref]

Pennycook, S. J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

Petruska, M. A.

R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Peyghambarian, N.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Poles, E.

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

Posnov, N. N.

Prokoshin, P. V.

Prudnikau, A. V.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Puntes, V.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Raaben, E. L.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Rosenthal, S. J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

Rukhlenko, I. D.

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Salmeron, M.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Sargent, E. H.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Sashchiuk, A.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Savitsji, V. G.

Savitski, V. G.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Savitsky, V. G.

Schaller, R. D.

R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

Scheele, M.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Scherer, J.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Scholes, G. D.

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Selmarten, D. C.

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

Sfeir, M. Y.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Shim, S. M.

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

Shirasaki, Y.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Sibbett, W.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Silbey, R.

R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
[Crossref]

Silva, A. C. A.

N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
[Crossref]

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Sirota, M.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

Skoptsov, N. A.

Smeets, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Song, K. W.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Suenaga, T.

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

Suna, A.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Supran, G. J.

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

Swain, R. A.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Tang, J.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Ten, S.

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

Thompson, C.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Tomm, J. W.

Treadway, J.

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

Tzolov, M.

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

Ushakova, E. V.

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Utzat, H.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Vanhaecke, F.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

Vanmaekelbergh, D.

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Vantomme, A.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Walravens, W.

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

Wang, C.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
[Crossref]

Wang, L.-W.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Wang, X.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

Wanger, D. D.

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Wehrenberg, B. L.

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
[Crossref]

Wei, H.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Weller, H.

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

Wiersma, D. S.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

Wilson, M. W. B.

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

Wise, F. W.

Wong, C.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Wu, S.

J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
[Crossref] [PubMed]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

Yue, F.

Yumashev, K. V.

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

I. A. Denisov, N. A. Skoptsov, M. S. Gaponenko, A. M. Malyarevich, K. V. Yumashev, and A. A. Lipovskii, “Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass,” Opt. Lett. 34(21), 3403–3405 (2009).
[Crossref] [PubMed]

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

A. M. Malyarevich, V. G. Savitsji, P. V. Prokoshin, N. N. Posnov, and K. V. Yumashev, “Glass doped with PbS quantum dots as a saturable absorber for 1-µm neodymium lasers,” J. Opt. Soc. Am. B 19(1), 28–32 (2002).
[Crossref]

A. M. Malyarevich, I. A. Denisov, V. G. Savitsky, K. V. Yumashev, and A. A. Lipovskii, “Glass doped with PbS quantum dots for passive Q switching of a 1.54- microm laser,” Appl. Opt. 39(24), 4345–4347 (2000).
[Crossref] [PubMed]

Zhang, J.

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

Zhang, X.

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

Zhang, Y.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Zhao, J.

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

Zhao, X.

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

Zhao, Z.

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

Zherebetskyy, D.

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Zhilin, A. A.

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Zunger, A.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[Crossref]

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

Zyss, J.

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

ACS Nano (3)

I. Moreels, Y. Justo, B. De Geyter, K. Haustraete, J. C. Martins, and Z. Hens, “Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study,” ACS Nano 5(3), 2004–2012 (2011).
[Crossref] [PubMed]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum dots,” ACS Nano 3(10), 3023–3030 (2009).
[Crossref] [PubMed]

E. V. Ushakova, A. P. Litvin, P. S. Parfenov, A. V. Fedorov, M. Artemyev, A. V. Prudnikau, I. D. Rukhlenko, and A. V. Baranov, “Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution,” ACS Nano 6(10), 8913–8921 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

G. J. Supran, K. W. Song, G. W. Hwang, R. E. Correa, J. Scherer, E. A. Dauler, Y. Shirasaki, M. G. Bawendi, and V. Bulović, “High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots,” Adv. Mater. 27(8), 1437–1442 (2015).
[Crossref] [PubMed]

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, “PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr: forsterite laser,” Appl. Phys. Lett. 71(12), 1595–1597 (1997).
[Crossref]

L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[Crossref]

L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. Brito Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett. 85(15), 3256–3258 (2004).
[Crossref]

C. Liu, Y. K. Kwon, and J. Heo, “Optical modulation of near-infrared photoluminescence from lead sulfide quantum dots in glasses,” Appl. Phys. Lett. 94(2), 021103 (2009).
[Crossref]

E. Poles, D. C. Selmarten, O. I. Mićić, and A. J. Nozik, “Anti-Stokes photoluminescence in colloidal semiconductor quantum dots,” Appl. Phys. Lett. 75(7), 971–973 (1999).
[Crossref]

Int. J. Appl. Glass Sci. (3)

C. Liu and J. Heo, “Band Gap and Diameter Modulation of Quantum Dots in Glasses,” Int. J. Appl. Glass Sci. 6(4), 329–338 (2015).
[Crossref]

N. Han, C. Liu, Z. Zhao, J. Zhang, J. Han, and X. Zhao, “Quantum Dots in Glasses: Size-Dependent Stokes Shift by Lead Chalcogenide,” Int. J. Appl. Glass Sci. 6(4), 339–344 (2015).
[Crossref]

C. Liu and J. Heo, “Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices,” Int. J. Appl. Glass Sci. 4(3), 163–173 (2013).
[Crossref]

J. Alloys Compd. (1)

N. O. Dantas, G. L. Fernandes, and A. C. A. Silva, “Controlling the growth of ultrasmall CdTe quantum dots and the diffusion of cadmium vacancies: Thermal annealing,” J. Alloys Compd. 637, 466–470 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

S. M. Shim, C. Liu, Y. K. Kwon, and J. Heo, “Lead Sulfide Quantum Dots Formation in Glasses Controlled by Erbium Ions,” J. Am. Ceram. Soc. 93(10), 3092–3094 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-Dependent Extinction Coefficients of PbS Quantum Dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[Crossref] [PubMed]

M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens, R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir, and J. S. Owen, “A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit,” J. Am. Chem. Soc. 139(6), 2296–2305 (2017).
[Crossref] [PubMed]

J. Chem. Phys. (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in polymers: From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[Crossref]

J. Lumin. (2)

D. Kim, T. Kuwabara, and M. Nakayama, “Photoluminescence properties related to localized states in colloidal PbS quantum dots,” J. Lumin. 119–120(7), 214–218 (2006).
[Crossref]

N. B. Pendyala and K. S. R. Koteswara Rao, “Identification of surface states in PbS quantum dots by temperature dependent photoluminescence,” J. Lumin. 128(11), 1826–1830 (2008).
[Crossref]

J. Non-Cryst. Solids (2)

C. Liu, J. Heo, X. Zhang, and J. L. Adam, “Photoluminescence of PbS quantum dots embedded in glasses,” J. Non-Cryst. Solids 354(2-9), 618–623 (2008).
[Crossref]

N. Han, C. Liu, J. Zhang, X. Zhao, J. Heo, and Y. Jiang, “Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur,” J. Non-Cryst. Solids 391(3), 39–42 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (3)

Y. Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An application,” J. Phys. Chem. 95(13), 3591–3597 (1991).
[Crossref]

R. S. Kane, R. E. Cohen, and R. Silbey, “Theoretical Study of the Electronic Structure of PbS Nanoclusters,” J. Phys. Chem. 100(19), 7928–7932 (1996).
[Crossref]

A. P. Litvin, A. A. Babaev, P. S. Parfenov, E. V. Ushakova, M. A. Baranov, O. V. Andreeva, K. Berwick, A. V. Fedorov, and A. V. Baranov, “Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix,” J. Phys. Chem. 121(15), 8645–8652 (2017).

J. Phys. Chem. B (5)

R. D. Schaller, M. A. Petruska, and V. I. J. Klimov, “Tunable Near-Infrared Optical Gain and Amplified Spontaneous Emission Using PbSe Nanocrystals,” J. Phys. Chem. B 107(50), 13765–13768 (2003).
[Crossref]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[Crossref] [PubMed]

B. L. Wehrenberg, C. Wang, and P. Guyot-Sionnest, “Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots,” J. Phys. Chem. B 106(41), 10634–10640 (2002).
[Crossref]

E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti, M. Sirota, E. Galun, Z. Burshtein, A. Q. Le Quang, I. Ledoux-Rak, and J. Zyss, “Air-Stable PbSe/PbS and PbSe/PbSexS1-x Core-Shell Nanocrystal Quantum Dots and Their Applications,” J. Phys. Chem. B 110(50), 25356–25365 (2006).
[Crossref] [PubMed]

A. Lobo, T. Möller, M. Nagel, H. Borchert, S. G. Hickey, and H. Weller, “Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals,” J. Phys. Chem. B 109(37), 17422–17428 (2005).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

E. S. FreitasNeto, A. C. A. Silva, S. W. da Silva, P. C. Morais, J. A. Gómez, O. Baffa, and N. O. Dantas, “Raman spectroscopy of very small Cd1−xCoxS quantum dots grown by a novel protocol: direct observation of acoustic-optical phonon coupling,” J. Raman Spectrosc. 44(7), 1022–1032 (2013).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Miyoshi, K. Nitta, H. Ohkuni, F. Ikeda, and N. Matsuo, “Laser-Induced Reversion of Photodarkening in CdS-Doped Glass,” Jpn. J. Appl. Phys. 36(11), 6726–6727 (1997).
[Crossref]

T. Miyoshi, A. Hirano, T. Suenaga, J. Nagata, T. Nagai, and N. Matsuo, “Photodarkening and Photobrightening in Glasses Doped with CdS and CdSxSe1-x Nanocrystals,” Jpn. J. Appl. Phys. 39(11), 6290–6292 (2000).
[Crossref]

Langmuir (1)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7(4), 286–289 (2010).
[Crossref]

Nano Lett. (5)

J. McBride, J. Treadway, L. C. Feldman, S. J. Pennycook, and S. J. Rosenthal, “Structural basis for near unity quantum yield core/shell nanostructures,” Nano Lett. 6(7), 1496–1501 (2006).
[Crossref] [PubMed]

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[Crossref]

J. M. An, A. Franceschetti, S. V. Dudiy, and A. Zunger, “The peculiar electronic structure of PbSe quantum dots,” Nano Lett. 6(12), 2728–2735 (2006).
[Crossref] [PubMed]

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. W. B. Wilson, and M. G. Bawendi, “PbS Nanocrystal Emission Is Governed by Multiple Emissive States,” Nano Lett. 16(10), 6070–6077 (2016).
[Crossref] [PubMed]

J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, “Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths,” Nano Lett. 16(1), 289–296 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

J. E. Lewis, S. Wu, and X. J. Jiang, “Unconventional gap state of trapped exciton in lead sulfide quantum dots,” Nanotechnology 21(45), 455402 (2010).
[Crossref] [PubMed]

Nat. Chem. (1)

J. Cui, A. P. Beyler, L. F. Marshall, O. Chen, D. K. Harris, D. D. Wanger, X. Brokmann, and M. G. Bawendi, “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths,” Nat. Chem. 5(7), 602–606 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12(5), 445–451 (2013).
[Crossref] [PubMed]

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, “Colloidal-quantum-dot photovoltaics using atomic-ligand passivation,” Nat. Mater. 10(10), 765–771 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, “Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber,” Opt. Commun. 241(4–6), 449–454 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Science (3)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290, 314–317 (2000).
[Crossref] [PubMed]

D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, and L.-W. Wang, “Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid,” Science 344(6190), 1380–1384 (2014).
[Crossref] [PubMed]

Small (1)

R. Koole, G. Allan, C. Delerue, A. Meijerink, D. Vanmaekelbergh, and A. J. Houtepen, “Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone,” Small 4(1), 127–133 (2008).
[Crossref] [PubMed]

Other (1)

S. V. Gaponenko, “Optical properties of semiconductor nanocrystals, (Chapter 3, in the series of) Cambridge Studies in Modern Optics,” Cambridge University Press, United Kingdom, 55–61 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) High-resolution transmission electron microscope image and (b) size distribution of nanocrystals formed in glass heat-treated at 540 °C for 30 h. Inset in (a) is an HR-TEM image of one nanocrystal formed in the glass.
Fig. 2
Fig. 2 Absorption spectra of (a) C1, (b) C2 and (c) C3 series, and (d) S1, (e) S2 and (f) S3 series glasses heat-treated at various conditions. In all spectra, (1) represents the as-prepared glasses, and (2)-(7) represent the heat-treatment temperatures of 500 °C, 510 °C, 520 °C, 530 °C, 540 °C, 550 °C, and 560 °C, respectively.
Fig. 3
Fig. 3 Multiple Gaussian functions simulation of the absorption spectrum of C3 glass heat-treated at 540 °C for 10 h. The open circles represent the recorded absorption data, and the solid lines are the Gaussian functions. The dark grey line at the top is the second derivative of the absorption spectrum.
Fig. 4
Fig. 4 (a) Transition energies of peaks obtained from multiple Gaussian simulations versus r−2, (b) exciton confinement energies as a function of the first exciton confinement energy.
Fig. 5
Fig. 5 Photoluminescence spectra of (a) C1, (b) C2 and (c) C3 series, and (d) S1, (e) S2 and (f) S3 series glasses heat-treated at various conditions. The number on the top of each curve represents the heat-treatment temperature. All the photoluminescence spectra were normalized for clear comparison.
Fig. 6
Fig. 6 (a) Simulation of photoluminescence of PbS QDs formed in C2 glasses heat-treated at 520 °C, 530 °C, and 560 °C. The blue lines are Gaussian functions for the P1 and P2 peaks, and red lines are summation of blue lines. Open circles represents the experimental data. (b) Full width at half maximum values of the lowest excitonic absorption peak (solid squares), P1 peak (solid circles) and P2 peak (open circles). (c) Energy of P1 (solid circles) and P2 (open circles) peaks. The solid line represents the photoluminescence energy with zero-Stokes shift. (d) Stokes shift of P1 (solid circles) and P2 (open circles) peaks.
Fig. 7
Fig. 7 Schematic energy diagram for small, medium and large PbS QDs. ETS, HTS, DS represent the electron trap states, hole trap states and defect states, respectively. Dashed (P1) and dotted (P2) arrows represent the radiative transitions from ETS and DS to 1Sh state of PbS QDs. The solid arrow is the radiative transition from 1Se→1Sh.
Fig. 8
Fig. 8 Low temperature (50-250 K) photoluminescence spectra of PbS QDs formed in glasses heat-treated at 520 °C, 530°C and 560 °C, respectively. The dashed lines indicate the peak energies recorded at 250 K.

Tables (1)

Tables Icon

Table 1 Absorption peak energy, calculated average radii and size dispersion of PbS QDs formed in glasses

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E x ( r )= E g + A x r 2 + B x r 1
E 1 ( eV )=0.41+2.796 r 2 +0.443 r 1
E * ( eV )=0.41+3.090 r 2 +0.496 r 1
E 2 ( eV )=0.41+3.458 r 2 +0.902 r 1
E 3 ( eV )=0.41+4.559 r 2 +0.983 r 1
E 4 ( eV )=0.41+5.036 r 2 +1.392 r 1
E 5 ( eV )=0.41+8.576 r 2 +1.294 r 1
( E * E g )/( E 1 E g )=1.115±0.032;( E 2 E g )/( E 1 E g )=1.517±0.083 ( E 3 E g )/( E 1 E g )=1.859±0.042;( E 4 E g )/( E 1 E g )=2.281±0.062 ( E 5 E g )/( E 1 E g )=3.002±0.142

Metrics