Abstract

Au clusters, embedded in a dendrimer nanoparticle, have been successfully fabricated by photoreduction of gold ion-dendrimer complex nanoparticles that were fabricated using the reprecipitation method. The electron microscope observations suggested that the Au cluster was formed in an individual gold ion-dendrimer complex after 10 min of UV irradiation. As a result, Au clusters with 1.3 ± 0.6 nm were obtained as a minimum size. In addition, the final size of Au clusters can be controlled by changing UV irradiation time through the aggregation (or fusion) of Au clusters and/or Au ions in several dendrimer molecules.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Growth of Ag, Au, Cu, and Pt nanostructures on surfaces by micropatterned laser-image formations

Leonardo C. Pacheco-Londono, Joaquín Aparicio-Bolaño, Oliva M. Primera-Pedrozo, and Samuel P. Hernandez-Rivera
Appl. Opt. 50(21) 4161-4169 (2011)

Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

Optical properties of structurally modified glasses doped with gold ions

Jianrong Qiu, Xiongwei Jiang, Congshan Zhu, Hideyuki Inouye, Jinhai Si, and Kazuyuki Hirao
Opt. Lett. 29(4) 370-372 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36(1), 153–166 (1997).
    [Crossref]
  2. T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
    [Crossref]
  3. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
    [Crossref]
  4. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
    [Crossref]
  5. A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
    [Crossref] [PubMed]
  6. K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
    [Crossref]
  7. M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
    [Crossref]
  8. K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
    [Crossref]
  9. M. Zhao and R. M. Crooks, “Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles,” Angew. Chem. Int. Ed. 38(3), 364–366 (1999).
    [Crossref]
  10. H. B. Harris and B. L. Turner, Dendrimers Synthesis, Applications and Role in Nanotechnology (Nova Science Pub. Inc., 2013), Chap. 4.
  11. K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
    [Crossref] [PubMed]
  12. J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
    [Crossref]
  13. N. Satoh and K. Yamamoto, “Quantum size titanium oxide templated with a π-conjugated dendrimer: crystal structure in the quantum size domain,” Synth. Met. 159(9–10), 813–816 (2009).
    [Crossref]
  14. T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
    [Crossref]
  15. T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
    [Crossref] [PubMed]
  16. M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
    [Crossref] [PubMed]
  17. M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
    [Crossref] [PubMed]
  18. T. Miyama and Y. Yonezawa, “Aggregation of photolytic gold nanoparticles at the surface of chitosan films,” Langmuir 20(14), 5918–5923 (2004).
    [Crossref] [PubMed]

2013 (1)

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

2011 (1)

T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
[Crossref]

2009 (1)

N. Satoh and K. Yamamoto, “Quantum size titanium oxide templated with a π-conjugated dendrimer: crystal structure in the quantum size domain,” Synth. Met. 159(9–10), 813–816 (2009).
[Crossref]

2005 (1)

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

2004 (1)

T. Miyama and Y. Yonezawa, “Aggregation of photolytic gold nanoparticles at the surface of chitosan films,” Langmuir 20(14), 5918–5923 (2004).
[Crossref] [PubMed]

2002 (1)

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

2001 (1)

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

2000 (3)

M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
[Crossref] [PubMed]

T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
[Crossref]

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

1999 (2)

M. Zhao and R. M. Crooks, “Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles,” Angew. Chem. Int. Ed. 38(3), 364–366 (1999).
[Crossref]

A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
[Crossref] [PubMed]

1998 (2)

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
[Crossref]

1997 (1)

M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36(1), 153–166 (1997).
[Crossref]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

1987 (1)

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Aihara, N.

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

Albrecht, K.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

Ariga, K.

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Bigioni, T. P.

T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
[Crossref]

Bosman, A. W.

A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
[Crossref] [PubMed]

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Chiba, H.

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

Cho, J.-S.

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

Chun, W.-J.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

Crooks, R. M.

M. Zhao and R. M. Crooks, “Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles,” Angew. Chem. Int. Ed. 38(3), 364–366 (1999).
[Crossref]

M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
[Crossref]

Dag, Ö.

T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
[Crossref]

Esumi, K.

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

Haruta, M.

M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36(1), 153–166 (1997).
[Crossref]

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Higuchi, M.

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
[Crossref] [PubMed]

Imaoka, T.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
[Crossref]

Janssen, H. M.

A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
[Crossref] [PubMed]

Kawana, Y.

T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
[Crossref]

Kitazawa, H.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

Kobayashi, T.

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Meijer, E. W.

A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
[Crossref] [PubMed]

Miyama, T.

T. Miyama and Y. Yonezawa, “Aggregation of photolytic gold nanoparticles at the surface of chitosan films,” Langmuir 20(14), 5918–5923 (2004).
[Crossref] [PubMed]

Omura, S.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

Sano, H.

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Satoh, N.

N. Satoh and K. Yamamoto, “Quantum size titanium oxide templated with a π-conjugated dendrimer: crystal structure in the quantum size domain,” Synth. Met. 159(9–10), 813–816 (2009).
[Crossref]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Shiki, S.

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
[Crossref] [PubMed]

Sun, L.

M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
[Crossref]

Suzuki, A.

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

Takanashi, K.

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

Torigoe, K.

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

Tsuruta, M.

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

Usui, K.

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Whetten, R. L.

T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
[Crossref]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Yamada, N.

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Yamahira, A.

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

Yamamoto, K.

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
[Crossref]

N. Satoh and K. Yamamoto, “Quantum size titanium oxide templated with a π-conjugated dendrimer: crystal structure in the quantum size domain,” Synth. Met. 159(9–10), 813–816 (2009).
[Crossref]

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
[Crossref] [PubMed]

Yonezawa, Y.

T. Miyama and Y. Yonezawa, “Aggregation of photolytic gold nanoparticles at the surface of chitosan films,” Langmuir 20(14), 5918–5923 (2004).
[Crossref] [PubMed]

Zhao, M.

M. Zhao and R. M. Crooks, “Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles,” Angew. Chem. Int. Ed. 38(3), 364–366 (1999).
[Crossref]

M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
[Crossref]

Angew. Chem. Int. Ed. (1)

M. Zhao and R. M. Crooks, “Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles,” Angew. Chem. Int. Ed. 38(3), 364–366 (1999).
[Crossref]

Catal. Today (1)

M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today 36(1), 153–166 (1997).
[Crossref]

Chem. Lett. (1)

M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, “Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C,” Chem. Lett. 16(2), 405–408 (1987).
[Crossref]

Chem. Rev. (1)

A. W. Bosman, H. M. Janssen, and E. W. Meijer, “About Dendrimers: structure, physical properties, and applications,” Chem. Rev. 99(7), 1665–1688 (1999).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

M. Zhao, L. Sun, and R. M. Crooks, “Preparation of Cu nanoclusters within dendrimer templates,” J. Am. Chem. Soc. 120(19), 4877–4878 (1998).
[Crossref]

T. Imaoka, H. Kitazawa, W.-J. Chun, S. Omura, K. Albrecht, and K. Yamamoto, “Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst?” J. Am. Chem. Soc. 135(35), 13089–13095 (2013).
[Crossref] [PubMed]

M. Higuchi, S. Shiki, K. Ariga, and K. Yamamoto, “First synthesis of phenylazomethine dendrimer ligands and structural studies,” J. Am. Chem. Soc. 123(19), 4414–4420 (2001).
[Crossref] [PubMed]

J. Chem. Soc. Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

J. Phys. Chem. B (1)

T. P. Bigioni, R. L. Whetten, and Ö. Dag, “Near-infrared luminescence from small gold nanocrystals,” J. Phys. Chem. B 104(30), 6983–6986 (2000).
[Crossref]

Langmuir (3)

K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir 16(6), 2604–2608 (2000).
[Crossref]

K. Esumi, A. Suzuki, N. Aihara, K. Usui, and K. Torigoe, “Preparation of gold colloids with UV irradiation using dendrimers as stabilizer,” Langmuir 14(12), 3157–3159 (1998).
[Crossref]

T. Miyama and Y. Yonezawa, “Aggregation of photolytic gold nanoparticles at the surface of chitosan films,” Langmuir 20(14), 5918–5923 (2004).
[Crossref] [PubMed]

Nature (1)

K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta, and H. Chiba, “Stepwise radial complexation of imine groups in phenylazomethine dendrimers,” Nature 415(6871), 509–511 (2002).
[Crossref] [PubMed]

Org. Lett. (1)

M. Higuchi, S. Shiki, and K. Yamamoto, “Novel phenylazomethine dendrimers: synthesis and structural properties,” Org. Lett. 2(20), 3079–3082 (2000).
[Crossref] [PubMed]

Polym. Adv. Technol. (1)

T. Imaoka, Y. Kawana, and K. Yamamoto, “Copper-containing bimetallic complexes as efficient catalysts for aerobic oxidative coupling polymerization,” Polym. Adv. Technol. 22(8), 1261–1265 (2011).
[Crossref]

Synth. Met. (2)

J.-S. Cho, K. Takanashi, M. Higuchi, and K. Yamamoto, “Phenylazomethine dendrimer complexes as novel hole-transporting materials of organic light-emitting diodes,” Synth. Met. 150(1), 79–82 (2005).
[Crossref]

N. Satoh and K. Yamamoto, “Quantum size titanium oxide templated with a π-conjugated dendrimer: crystal structure in the quantum size domain,” Synth. Met. 159(9–10), 813–816 (2009).
[Crossref]

Other (1)

H. B. Harris and B. L. Turner, Dendrimers Synthesis, Applications and Role in Nanotechnology (Nova Science Pub. Inc., 2013), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Molecular structure of dendritic phenylazomethine (DPA).
Fig. 2
Fig. 2 SEM images of (14Au3+)@DPA NPs under different concentration of injected solution in the reprecipitation method: 0.07 mM (left) and 0.27 mM (right).
Fig. 3
Fig. 3 Dependence of (14Au3+)@DPA-NP size on concentration of the injected solution.
Fig. 4
Fig. 4 XPS spectra of (14Au3+)@DPA NPs before (blue) and after (red) UV irradiation.
Fig. 5
Fig. 5 Extinction spectral change of (14Au3+)@DPA NPs dispersion liquid before (blue) and after (red) UV irradiation. The inset is an enlarged spectra in a long-wavelength region.
Fig. 6
Fig. 6 SEM images of (14Au3+)@DPA NPs before UV irradiation (left), and after 10 min (center) and 5 h (right) of UV irradiation.
Fig. 7
Fig. 7 TEM images (a and b) and size histograms (c and d) of (14Au3+)@DPA NPs before (left) and after 10 min (right) UV irradiation. The insets in (a) and (b) are schematic depiction of (14Au3+)@DPA and Au@DPA molecules, respectively.
Fig. 8
Fig. 8 Relationship between Au particle size and UV irradiation time.

Metrics