Abstract

We present continuous wave laser activity in neodymium-doped sapphire ridge waveguides. The ridges were prepared using diamond blade dicing of thin Nd3+:sapphire films grown on sapphire substrates by pulsed laser deposition. Lasing was realized at wavelengths of 1092 nm and 1097 nm for ridge waveguide orientations addressing the σ- and π-polarization, respectively. A maximum slope efficiency with respect to incident pump power of 12% was achieved in σ-polarization with a ridge cross section of 40.8 × 2.6 µm2 and a ridge length of 8 mm. With an available incident pump power of 2.8 W from a Ti:sapphire laser, a maximum output power of 322 mW was realized.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing

Yuechen Jia, Christian E. Rüter, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Mater. Express 3(4) 433-438 (2013)

Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion

Dominik Brüske, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 25(23) 29374-29379 (2017)

Second harmonic generation of diamond-blade diced KTiOPO4 ridge waveguides

Chen Chen, Christian E. Rüter, Martin F. Volk, Cheng Chen, Zhen Shang, Qingming Lu, Shavkat Akhmadaliev, Shengqiang Zhou, Feng Chen, and Detlef Kip
Opt. Express 24(15) 16434-16439 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
    [Crossref]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  3. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1 (2015).
    [Crossref]
  4. H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
    [Crossref]
  5. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref] [PubMed]
  6. C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 µm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1–6), 355–361 (2004).
    [Crossref]
  7. J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6(1), 91 (2016).
    [Crossref]
  8. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009).
    [Crossref] [PubMed]
  9. T. L. Parsonage, S. J. Beecher, A. Choudhary, J. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “7 W diode-end-pumped PLD-grown Yb:Lu2O3 planar waveguide laser,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper AW1A.6.
  10. S. J. Beecher, J. A. Grant-Jacob, P. Hua, J. J. Prentice, R. W. Eason, D. P. Shepherd, and J. I. Mackenzie, “Ytterbium-doped-garnet crystal waveguide lasers grown by pulsed laser deposition,” Opt. Mater. Express 7(5), 1628 (2017).
    [Crossref]
  11. R. Kumaran, S. E. Webster, S. Penson, W. Li, T. Tiedje, P. Wei, and F. Schiettekatte, “Epitaxial neodymium-doped sapphire films, a new active medium for waveguide lasers,” Opt. Lett. 34(21), 3358–3360 (2009).
    [Crossref] [PubMed]
  12. S. Heinrich, T. Gün, and G. Huber, “Neodymium and ytterbium doped sapphire films grown by pulsed laser deposition,” in AIOM, Talk 1F2A.5, San Diego, USA (2012).
  13. S. H. Waeselmann, S. Heinrich, C. Kränkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
    [Crossref]
  14. A. Kahn, Y. Kuzminykh, H. Scheife, and G. Huber, “Nondestructive measurement of the propagation losses in active planar waveguides,” J. Opt. Soc. Am. B 24(7), 1571 (2007).
    [Crossref]

2017 (1)

2016 (3)

2015 (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1 (2015).
[Crossref]

2009 (2)

2007 (1)

2004 (1)

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 µm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1–6), 355–361 (2004).
[Crossref]

1997 (1)

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

1996 (1)

1975 (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

Beecher, S. J.

Bradley, J. D.

Calmano, T.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1 (2015).
[Crossref]

Davis, K. M.

Eason, R. W.

Grant-Jacob, J. A.

Grivas, C.

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 µm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1–6), 355–361 (2004).
[Crossref]

Heinrich, S.

Hirao, K.

Hole, D.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Hua, P.

Huber, G.

Kahn, A.

Kip, D.

Kogelnik, H.

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

Kränkel, C.

S. H. Waeselmann, S. Heinrich, C. Kränkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Kühn, H.

Kumaran, R.

Kuzminykh, Y.

Li, W.

Lu, B.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Mackenzie, J. I.

May-Smith, T. C.

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 µm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1–6), 355–361 (2004).
[Crossref]

Miura, K.

Müller, S.

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1 (2015).
[Crossref]

Nunn, P.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Olivares, J.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Parsonage, T. L.

Penson, S.

Petermann, K.

Pollnau, M.

Prentice, J. J.

Rüter, C. E.

Scheife, H.

Schiettekatte, F.

Shepherd, D. P.

Spadoni, L.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Sugimoto, N.

Suntsov, S.

Tiedje, T.

Townsend, P.

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Volk, M. F.

Waeselmann, S. H.

S. H. Waeselmann, S. Heinrich, C. Kränkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Webster, S. E.

Wei, P.

Wörhoff, K.

IEEE J. Sel. Top. Quantum Electron. (1)

T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. H. Waeselmann, S. Heinrich, C. Kränkel, and G. Huber, “Lasing of Nd3+ in sapphire,” Laser Photonics Rev. 10(3), 510–516 (2016).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. Sec. B (1)

P. Nunn, J. Olivares, L. Spadoni, P. Townsend, D. Hole, and B. Lu, “Ion beam enhanced chemical etching of Nd:YAG for optical waveguides,” Nucl. Instrum. Meth. Phys. Res. Sec. B 127–128, 507–511 (1997).
[Crossref]

Opt. Commun. (1)

C. Grivas, T. C. May-Smith, D. P. Shepherd, and R. W. Eason, “Laser operation of a low loss (0.1 dB/cm) Nd:Gd3Ga5O12 thick (40 µm) planar waveguide grown by pulsed laser deposition,” Opt. Commun. 229(1–6), 355–361 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (2)

Other (2)

T. L. Parsonage, S. J. Beecher, A. Choudhary, J. Grant-Jacob, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “7 W diode-end-pumped PLD-grown Yb:Lu2O3 planar waveguide laser,” in Advanced Solid State Lasers, OSA Technical Digest (Optical Society of America, 2015), paper AW1A.6.

S. Heinrich, T. Gün, and G. Huber, “Neodymium and ytterbium doped sapphire films grown by pulsed laser deposition,” in AIOM, Talk 1F2A.5, San Diego, USA (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Hexagonal unit cell illustrating the orientation of the substrates and the grown films. Waveguiding occurs with polarizations parallel to the film surfaces. The films have been grown on m-cut (depicted in green) and a-cut (depicted in orange) substrates. The ridge waveguides were cut in a way that their orientation was parallel to the c-axis in the film on m-cut substrates and perpendicular to the c-axis in the a-cut substrates allowing waveguiding for σ-polarization and π-polarization, respectively.
Fig. 2
Fig. 2 Microscope images of a 40 µm wide ridge prepared using diamond dicing in a 2.6 µm thick Nd(1%):sapphire film. Top view (left), front view (right).
Fig. 3
Fig. 3 Scattering losses of diamond diced channel waveguides with different widths prepared on 2.6 µm thick Nd(1%):sapphire films on the a-cut substrate.
Fig. 4
Fig. 4 Schematic rendering of the applied laser setup.
Fig. 5
Fig. 5 Output power vs. incident pump power in 8 mm long ridge waveguides of different widths dRidge prepared from a 2.6 µm thick Nd(1%):sapphire film grown on the (10-10) oriented substrate. PThr and ηslope denote threshold pump power and slope efficiency, respectively. Lasing occurred at 1092 nm in σ-polarization.
Fig. 6
Fig. 6 Output power vs. incident pump power in 6 mm long ridge waveguides of different widths dRidge prepared from a 2 µm thick Nd(1%):sapphire film grown on (11-20) oriented sapphire. PThr and ηslope denote threshold pump power and slope efficiency, respectively. Lasing occurred at a wavelength of 1097 nm in π polarization.
Fig. 7
Fig. 7 Measured slope efficiencies ηSlope vs. ridge widths dridge for all examined channel waveguides on (10-10) and (10-20) oriented substrates.
Fig. 8
Fig. 8 Laser spectrum (left) and near field image of the laser mode in a 40 µm-wide ridge (right) of a Nd:sapphire laser in σ-polarization. The white silhouette serves as a guide for the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η slope,max η inc η res η Stokes 25% .

Metrics