Abstract

In this paper, SrMoO4:Er3+ phosphor excited by 976 nm diode laser shows remarkably intense green and relatively weak red upconversion emissions. Subsequently, within the temperature range from 310.8 K to 629.4 K, we tested a temperature-dependent fluorescence intensity ratio originating from the thermally coupled 2H11/2 and 4S3/2 states. It is revealed that SrMoO4:Er3+ phosphor exhibits a high sensitivity of 0.0326 K−1 at 554.0 K, indicating that the phosphor can be regarded as a promising building block for optical temperature sensor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

Optical thermometry based on upconversion luminescence of Yb3+-Er3+ and Yb3+-Ho3+ doped Y6WO12 phosphors

Songsong An, Jia Zhang, and Lei Zhao
Appl. Opt. 58(27) 7451-7457 (2019)

Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  2. S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
    [Crossref] [PubMed]
  3. B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
    [Crossref]
  4. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
    [Crossref]
  5. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  6. S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
    [Crossref]
  7. P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
    [Crossref]
  8. J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).
  9. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref] [PubMed]
  10. D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
    [Crossref]
  11. L. A. Riseberg and H.-W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
    [Crossref]
  12. I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
    [Crossref]
  13. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
    [Crossref]
  14. A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
    [Crossref]
  15. A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
    [Crossref]
  16. T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
    [Crossref] [PubMed]
  17. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
    [Crossref]
  18. M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  19. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  20. X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
    [Crossref]

2017 (1)

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

2015 (3)

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

2013 (3)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

2012 (2)

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

2011 (2)

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

2008 (1)

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

2007 (2)

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

2004 (1)

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

1999 (1)

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

1998 (2)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

1968 (1)

L. A. Riseberg and H.-W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Alencar, M. A.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Bai, Y.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Berard, M.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Cao, W.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Cavalcante, L.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Cheetham, A. K.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Chen, G.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Chen, Y.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Curry, R. J.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Cussó, F.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

de Araujo, C. B.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

De Araujo, M.

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

de Araujo, M. T.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Deng, K.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Dos Santos, P.

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

dos Santos, P. V.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Dramicanin, M. D.

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

Duan, C.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Etchart, I.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Gao, X.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Gavrilovic, T. V.

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

Gillin, W. P.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Gouveia-Neto, A.

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

Gouveia-Neto, A. S.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Hao, S.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Hernandez, I.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Huang, Z.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Huignard, A.

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

Jiang, G.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Jovanovic, D. J.

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

Joya, M.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Kong, X.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Kumar, V.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Li, C.

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Li, D.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Liu, D.

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Lojpur, V.

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

Longo, E.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Maciel, G. S.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Medeiros Neto, J. A.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Miao, S.

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Moos, H.-W.

L. A. Riseberg and H.-W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Neto, J. A. M.

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

Nie, Z.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Pandey, A.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Patra, A.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Pizani, P.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Quintanilla, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Rai, V. K.

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Riseberg, L. A.

L. A. Riseberg and H.-W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Sczancoski, J.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Sombra, A.

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

Sombra, A. S. B.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Song, Y.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Soni, A. K.

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Sun, Y.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Swart, H. C.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Varela, J.

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Wang, P.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Wang, X.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wang, Y.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Wei, X.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Yang, C.

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Yang, T.

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Yin, M.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Yu, Y.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Zhang, H.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Zhang, L.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Zhang, X.

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

Zhang, Z.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

Zheng, L.

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

Zhou, S.

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref] [PubMed]

Appl. Phys. Express (2)

W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, and W. Cao, “Optical Thermometry through Green Upconversion Emissions in Er3+/Yb3+ -Codoped CaWO4 Phosphor,” Appl. Phys. Express 5(7), 072201 (2012).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Appl. Phys. Lett. (3)

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

B. Dong, D. Liu, X. Wang, T. Yang, S. Miao, and C. Li, “Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3,” Appl. Phys. Lett. 90(18), 181117 (2007).
[Crossref]

Biochem. Eng. J. (1)

J. Sczancoski, L. Cavalcante, M. Joya, J. Varela, P. Pizani, and E. Longo, “SrMoO4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties,” Biochem. Eng. J. 140(1), 632–637 (2008).

Chem. Phys. Lett. (1)

A. K. Soni and V. K. Rai, “Thermal and pump power effect in SrMoO4:Er3+-Yb3+ phosphor for thermometry and optical heating,” Chem. Phys. Lett. 667, 226–232 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

P. Dos Santos, M. De Araujo, A. Gouveia-Neto, J. A. M. Neto, and A. Sombra, “Optical thermometry through infrared excited upconversion fluorescence emission in Er3+-and Er3+-Yb3+-doped chalcogenide glasses,” IEEE J. Quantum Electron. 35(3), 395–399 (1999).
[Crossref]

J. Alloys Compd. (1)

D. Li, Z. Huang, Z. Nie, L. Zhang, Y. Bai, X. Zhang, Y. Song, and Y. Wang, “Anomalous upconversion luminescence of SrMoO4:Yb3+/Er3+ nanocrystals by high excited state energy transfer,” J. Alloys Compd. 650, 799–804 (2015).
[Crossref]

J. Appl. Phys. (2)

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4654 (1998).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Mater. Chem. (1)

I. Etchart, I. Hernandez, A. Huignard, M. Berard, W. P. Gillin, R. J. Curry, and A. K. Cheetham, “Efficient oxide phosphors for light upconversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd),” J. Mater. Chem. 21(5), 1387–1394 (2011).
[Crossref]

J. Phys. Chem. C (1)

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111(41), 15119–15124 (2007).
[Crossref]

Opt. Commun. (1)

S. Zhou, K. Deng, X. Wei, G. Jiang, C. Duan, Y. Chen, and M. Yin, “Upconversion luminescence of NaYF4:Yb3+, Er3+ for temperature sensing,” Opt. Commun. 291, 138–142 (2013).
[Crossref]

Phys. Rev. (1)

L. A. Riseberg and H.-W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[Crossref]

Sci. Rep. (1)

T. V. Gavrilović, D. J. Jovanović, V. Lojpur, and M. D. Dramićanin, “Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method,” Sci. Rep. 4(1), 4209 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
[Crossref]

Theranostics (1)

S. Hao, G. Chen, and C. Yang, “Sensing using rare-earth-doped upconversion nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) XRD pattern of SMO:Er phosphor. (b) The crystal structure of the SrMoO4.
Fig. 2
Fig. 2 (a) UC spectra and the corresponding photograph of SMO:Er phosphor under LD excitation of 976 nm. (b) CIE chromaticity diagram of SMO:Er phosphor at different excitation powers.
Fig. 3
Fig. 3 (a) Temperature dependence of the green UC spectra of SMO:Er phosphor under 976 nm excitation. (b) Temperature dependence of IH, IS and IT/I0.
Fig. 4
Fig. 4 (a) Monolog natural logarithm plot of FIR as a function of inverse absolute temperature. (b) FIR as a function of inverse absolute temperature.
Fig. 5
Fig. 5 Sensitivity of FIR technique dependent temperature of SMO:Er phosphor.

Tables (1)

Tables Icon

Table 1 FIR parameters of Er3+ doped and Er3+/Yb3+ co-doped hosts, SMAX and the temperature range

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W m ( T ) = W 0 ( 0 ) [ 1 exp ( h v / k T ) ] m
R = I H I S = N ( 2 H 11 / 2 ) N ( 4 S 3/2 ) = g a σ a ω a g b σ b ω b exp ( Δ E k T ) = C exp ( Δ E k T )
d R d T = R ( Δ E k T 2 )

Metrics