Abstract

Photopatternable nanoparticles can be easily dispersed into polymeric matrices and used to fabricate optoelectronic devices for display, sensing and quantum information processing applications. Here we report the first instance of a cadmium-free photopatternable quantum dot. A ligand containing dithiolane group at one end and an ene-functionalization at the other end were synthesized for this purpose. The myristic acid ligands on as synthesized red indium zinc phosphide-zinc sulfide (In(Zn)P/ZnS) quantum dots were easily replaced by the newly developed ligand by a simple sonication procedure. The functionalized quantum dots could be easily incorporated into a commercially available photoresist. The quantum dot doped photoresist was used to fabricate three-dimensional quantum dot doped hierarchical microstructures by two-photon lithography. Confocal imaging microscopy was used to verify the uniform incorporation of the nanoparticles in the hybrid microstructure.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices

Kyung Kook Jang, Prem Prabhakaran, Deepak Chandran, Jong-Jin Park, and Kwang-Sup Lee
Opt. Mater. Express 2(5) 519-525 (2012)

Fabrication of warm, high CRI white LED using non-cadmium quantum dots

Woo-Seuk Song, Sun-Hyoung Lee, and Heesun Yang
Opt. Mater. Express 3(9) 1468-1473 (2013)

Impact of size and shape on trap state controlled luminescence properties of trioctylphosphine-capped cadmium selenide quantum dots

Aditya Nath Bhatt, Upendra Kumar Verma, and Brijesh Kumar
J. Opt. Soc. Am. B 36(6) 1466-1471 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
    [Crossref] [PubMed]
  2. A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem. 44(20), 6893–6899 (2005).
    [Crossref] [PubMed]
  3. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [Crossref] [PubMed]
  4. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
    [Crossref] [PubMed]
  5. G. Konstantatos and E. H. Sargent, Colloidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, 2013).
  6. OEKO-Institut, “QD Vision Responses to Oeko Institut Regarding Exemption 39.B” (OEKO-Institut, 10.27.2015, 2015), retrieved 04.01.2017, 2017, https://tinyurl.com/ROHSCdSe39B01 .
  7. OEKO-Institut, “QD Vision Response to Nanoco’s Oeko Submission on Exemption 39.B” (12.08.2016, 2016), retrieved 04.01.2017, 2017, https://tinyurl.com/ROHSCdSe39B .
  8. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
    [Crossref]
  9. J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
    [Crossref] [PubMed]
  10. K. K. Jang, P. Prabhakaran, D. Chandran, J.-J. Park, and K.-S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express 2(5), 519–525 (2012).
    [Crossref]
  11. R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
    [Crossref] [PubMed]
  12. U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
    [Crossref]
  13. J. Park, “Two-photon active functional materials for biomedical applications,” (Ph.D. Thesis, Hannam University, Daejeon 2015).
  14. F. Fleischhaker and R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots,” Chem. Mater. 17(6), 1346–1351 (2005).
    [Crossref]
  15. R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
    [Crossref]
  16. J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
    [Crossref] [PubMed]
  17. W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
    [Crossref] [PubMed]
  18. C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
    [Crossref] [PubMed]
  19. G. Odian, Principles of Polymerization (John Wiley & Sons, 2004).
  20. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
    [Crossref] [PubMed]
  21. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
    [Crossref]
  22. L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
    [Crossref] [PubMed]
  23. I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
    [Crossref]
  24. E. Lemmon, M. McLinden, D. Friend, P. Linstrom, and W. Mallard, “NIST chemistry WebBook, NIST standard reference database number 69,” National Institute of Standards and Technology, Gaithersburg (2011).
  25. N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
    [Crossref] [PubMed]
  26. M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
    [Crossref] [PubMed]
  27. W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
    [Crossref] [PubMed]
  28. J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
    [Crossref]

2016 (2)

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

2015 (1)

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

2014 (3)

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

2013 (1)

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

2010 (4)

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
[Crossref] [PubMed]

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

2008 (2)

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

2006 (2)

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

2005 (4)

F. Fleischhaker and R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots,” Chem. Mater. 17(6), 1346–1351 (2005).
[Crossref]

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem. 44(20), 6893–6899 (2005).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

2000 (1)

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Anderson, G. P.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Anderson, N. C.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

Atatüre, M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Azadfar, N.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Badolato, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Bawendi, M. G.

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Benelli, T.

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

Boles, M. A.

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

Bowman, C. N.

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
[Crossref] [PubMed]

Brunel, F. M.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Bruns, M.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Bulliard, X.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Cartwright, A. N.

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Chandran, D.

Chang, E. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Cheng, X.

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

Cho, N.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Choi, J. J.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

Clapp, A. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Dawson, P. E.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Deschamps, J. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Duan, X.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Evans, D. G.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Fleischhaker, F.

F. Fleischhaker and R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots,” Chem. Mater. 17(6), 1346–1351 (2005).
[Crossref]

Gerthsen, D.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Gooding, J. J.

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

Ha, C. W.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

Hendricks, M. P.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Hoyle, C. E.

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
[Crossref] [PubMed]

Hu, E.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Hur, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Hyeon, T.

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

Im, K.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Imamoglu, A.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Jang, K. K.

K. K. Jang, P. Prabhakaran, D. Chandran, J.-J. Park, and K.-S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express 2(5), 519–525 (2012).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Jensen, K.

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Jeon, S.-J.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Kim, J.-M.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Kim, S.

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Kim, S. J.

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Kim, S.-W.

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Kim, W. J.

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Koh, C. Y.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Krini, R.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

Lee, J.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Lee, J. M.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Lee, J.-H.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Lee, K.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Lee, K.-S.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

K. K. Jang, P. Prabhakaran, D. Chandran, J.-J. Park, and K.-S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express 2(5), 519–525 (2012).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Lee, T.-W.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Lee, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Li, C.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Liang, R.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Liem, N. Q.

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
[Crossref]

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Ling, D.

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

Lowe, A. B.

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
[Crossref] [PubMed]

Lowe, S. B.

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

Maldovan, M.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Mard, H. E.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

Mattoussi, H.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Mauro, J. M.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Medintz, I. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Mikulec, F. V.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Min, S.-Y.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Nienhaus, G. U.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Nozik, A. J.

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem. 44(20), 6893–6899 (2005).
[Crossref] [PubMed]

Owen, J. S.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

Park, J.-J.

K. K. Jang, P. Prabhakaran, D. Chandran, J.-J. Park, and K.-S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express 2(5), 519–525 (2012).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Prabhakaran, P.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

K. K. Jang, P. Prabhakaran, D. Chandran, J.-J. Park, and K.-S. Lee, “Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices,” Opt. Mater. Express 2(5), 519–525 (2012).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Prasad, P. N.

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Ray, S.

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

Raymo, F. M.

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

Reece, P. J.

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
[Crossref]

Samoc, M.

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

Send, W.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Shang, L.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Sheng, W.

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Shi, W.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Singer, J. P.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Son, Y.

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Stein, O.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Stockmar, F.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Sundar, V. C.

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

Talapin, D. V.

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

Thomas, E. L.

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Thuy, U. T. D.

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
[Crossref]

Tian, R.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Tiefenbrunn, T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

Trouillet, V.

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Uyeda, H. T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

Wei, M.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Yan, D.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Yang, D.-Y.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Yildiz, I.

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

Yong, S.

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Yu, X.

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Zentel, R.

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

F. Fleischhaker and R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots,” Chem. Mater. 17(6), 1346–1351 (2005).
[Crossref]

Adv. Funct. Mater. (1)

J.-J. Park, X. Bulliard, J. M. Lee, J. Hur, K. Im, J.-M. Kim, P. Prabhakaran, N. Cho, K.-S. Lee, S.-Y. Min, T.-W. Lee, S. Yong, and D.-Y. Yang, “Pattern formation of silver nanoparticles in 1-, 2-, and 3-D microstructures fabricated by a photo- and thermal reduction method,” Adv. Funct. Mater. 20(14), 2296–2302 (2010).
[Crossref]

Adv. Mater. (1)

J.-H. Lee, C. Y. Koh, J. P. Singer, S.-J. Jeon, M. Maldovan, O. Stein, and E. L. Thomas, “25th anniversary article: ordered polymer structures for the engineering of photons and phonons,” Adv. Mater. 26(4), 532–569 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
[Crossref]

Chem. Mater. (3)

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
[Crossref]

F. Fleischhaker and R. Zentel, “Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots,” Chem. Mater. 17(6), 1346–1351 (2005).
[Crossref]

R. Liang, D. Yan, R. Tian, X. Yu, W. Shi, C. Li, M. Wei, D. G. Evans, and X. Duan, “Quantum dots-based flexible films and their application as the phosphor in white light-emitting diodes,” Chem. Mater. 26(8), 2595–2600 (2014).
[Crossref]

Chem. Soc. Rev. (2)

C. E. Hoyle, A. B. Lowe, and C. N. Bowman, “Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis,” Chem. Soc. Rev. 39(4), 1355–1387 (2010).
[Crossref] [PubMed]

X. Cheng, S. B. Lowe, P. J. Reece, and J. J. Gooding, “Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications,” Chem. Soc. Rev. 43(8), 2680–2700 (2014).
[Crossref] [PubMed]

Inorg. Chem. (1)

A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion,” Inorg. Chem. 44(20), 6893–6899 (2005).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen, “Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: Spectroscopic observation of facile metal-carboxylate displacement and binding,” J. Am. Chem. Soc. 135(49), 18536–18548 (2013).
[Crossref] [PubMed]

H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered reecombinant protein,” J. Am. Chem. Soc. 122(49), 12142–12150 (2000).
[Crossref]

J. Mater. Chem. (1)

I. Yildiz, S. Ray, T. Benelli, and F. M. Raymo, “Dithiolane ligands for semiconductor quantum dots,” J. Mater. Chem. 18(33), 3940–3947 (2008).
[Crossref]

Langmuir (1)

W. Sheng, S. Kim, J. Lee, S.-W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir 22(8), 3782–3790 (2006).
[Crossref] [PubMed]

Macromol. Rapid Commun. (1)

R. Krini, C. W. Ha, P. Prabhakaran, H. E. Mard, D.-Y. Yang, R. Zentel, and K.-S. Lee, “Photosensitive functionalized surface-modified quantum dots for polymeric structures via two-photon-initiated polymerization technique,” Macromol. Rapid Commun. 36(11), 1108–1114 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

W. J. Kim, S. J. Kim, K.-S. Lee, M. Samoc, A. N. Cartwright, and P. N. Prasad, “Robust microstructures using UV photopatternable semiconductor nanocrystals,” Nano Lett. 8(10), 3262–3265 (2008).
[Crossref] [PubMed]

J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son, D.-Y. Yang, and K.-S. Lee, “Photopatternable quantum dots forming quasi-ordered arrays,” Nano Lett. 10(7), 2310–2317 (2010).
[Crossref] [PubMed]

Nat. Mater. (3)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[Crossref] [PubMed]

M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, “The surface science of nanocrystals,” Nat. Mater. 15(2), 141–153 (2016).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Science (1)

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[Crossref] [PubMed]

Small (1)

L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, and G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging,” Small 7(18), 2614–2620 (2011).
[Crossref] [PubMed]

Other (6)

E. Lemmon, M. McLinden, D. Friend, P. Linstrom, and W. Mallard, “NIST chemistry WebBook, NIST standard reference database number 69,” National Institute of Standards and Technology, Gaithersburg (2011).

G. Konstantatos and E. H. Sargent, Colloidal Quantum Dot Optoelectronics and Photovoltaics (Cambridge University Press, 2013).

OEKO-Institut, “QD Vision Responses to Oeko Institut Regarding Exemption 39.B” (OEKO-Institut, 10.27.2015, 2015), retrieved 04.01.2017, 2017, https://tinyurl.com/ROHSCdSe39B01 .

OEKO-Institut, “QD Vision Response to Nanoco’s Oeko Submission on Exemption 39.B” (12.08.2016, 2016), retrieved 04.01.2017, 2017, https://tinyurl.com/ROHSCdSe39B .

J. Park, “Two-photon active functional materials for biomedical applications,” (Ph.D. Thesis, Hannam University, Daejeon 2015).

G. Odian, Principles of Polymerization (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Synthesis of pentafluorphenyl active ester of α-lipoic acid LP, (b) synthesis of thiol-terminated ligand LN, (c) ligand exchange of myristic acid on as synthesized QDs with LN through sonication.
Fig. 2
Fig. 2 Characterization of In(Zn)P/ZnS quantum dot. (a)-(b) TEM images scale bars 20 nm, and 10 nm, respectively, (c) EDS spectrum of QD: The inset shows the weight percentage (Wt.%) and atomic percentage (At.%) of different elements on the measured QD nanocrystal.
Fig. 3
Fig. 3 (a) FT-IR stack spectrum comparing myristic acid (green, top) with LN (black, middle) and QD-LN (red, bottom), (b) the absorption and emission spectra of QD-MA (∆) and QD-LN (○), (c) photograph under UV irradiation of QD-MA and QD-LN.
Fig. 4
Fig. 4 (a) Two-photon polymerization driven fabrication of quantum dot embedded 3D polymeric structure from the SCR-500 photoresist doped with In(Zn)P/ZnS QDs. A drop of the sample photoresist is placed on a thin cover glass substrate. The laser is focused on the sample through the cover glass using a high numerical aperture lens. (b) The main components of the TPP photoresists are urethane acrylate photoresist SCR 500, the ligand functionalized QD-LN and highly efficient two-photon photoinitaitor JS.
Fig. 5
Fig. 5 SEM and confocal micrographs of the 3D patterns obtained by microfabrication experiments, (a) shows the top view, and side view of the design of 3D structure, (b) SEM image of the side view of a red QD incorporated microstructure fabricated by TPL, (c) SEM image of an array of three hierarchical 3D structures fabricated by TPL. (d) SEM image of the top view of a microstructure, (e) complements the SEM image in (c) and shows the confocal microscopy image of the same three structures, (f) top view of the microstructure by confocal microscopy.

Metrics