Abstract

Nanocrystalline spray-deposited fluorine-doped tin oxide (FTO) was investigated for mid- and long-wave infrared plasmonics. Silicon lamellar gratings were conformally coated with FTO, and the excitation of surface plasmon polaritons (SPP) was investigated via their angle and wavelength-dependent reflectivity. Photon-to-SPP coupling efficiency as a function of grating parameters, and in comparsion to gallium-doped zinc oxide (GZO) gratings, was quantitatively analyzed based on a figure of merit related to the sharpness and depth of the coupling resonance. Conformal spray-deposited FTO would be useful in mid- and long-wave infrared plasmonic channel wave guides.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorine-doped tin oxides for mid-infrared plasmonics

Farnood Khalilzadeh-Rezaie, Isaiah O. Oladeji, Justin W. Cleary, Nima Nader, Janardan Nath, Imen Rezadad, and Robert E. Peale
Opt. Mater. Express 5(10) 2184-2192 (2015)

Plasmon polaritons in the near infrared on fluorine doped tin oxide films

Lorenzo Dominici, Francesco Michelotti, Thomas M. Brown, Andrea Reale, and Aldo Di Carlo
Opt. Express 17(12) 10155-10167 (2009)

Platinum germanides for mid- and long-wave infrared plasmonics

Justin W. Cleary, William H. Streyer, Nima Nader, Shiva Vangala, Ivan Avrutsky, Bruce Claflin, Joshua Hendrickson, Daniel Wasserman, Robert E. Peale, Walter Buchwald, and Richard Soref
Opt. Express 23(3) 3316-3326 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
    [Crossref] [PubMed]
  2. G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
    [Crossref]
  3. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  4. A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
    [Crossref] [PubMed]
  5. J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).
  6. M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
    [Crossref]
  7. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
    [Crossref] [PubMed]
  8. F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
    [Crossref]
  9. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  10. R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
    [Crossref]
  11. R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  12. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref] [PubMed]
  13. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
    [Crossref] [PubMed]
  14. O. D. Miller, A. G. Polimeridis, M. T. Homer Reid, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Fundamental limits to optical response in absorptive systems,” Opt. Express 24(4), 3329–3364 (2016).
    [Crossref] [PubMed]
  15. H. Matsui, A. Ikehata, and H. Tabata, “Asymmetric plasmon structures on ZnO: Ga for high sensitivity in the infrared range,” Appl. Phys. Lett. 109(19), 191601 (2016).
    [Crossref]
  16. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.-P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009).
    [Crossref] [PubMed]
  17. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
    [Crossref] [PubMed]
  18. M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
    [Crossref] [PubMed]
  19. J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
    [Crossref]
  20. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
    [Crossref] [PubMed]
  21. L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
    [Crossref]
  22. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
    [Crossref]
  23. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
    [Crossref] [PubMed]
  24. J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).
  25. J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
    [Crossref]
  26. J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
    [Crossref]
  27. N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
    [Crossref]
  28. G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.295–297(10), (2010).
  29. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
    [Crossref]
  30. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  31. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).
  32. L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).
  33. I. R. Hooper and W. L. Barnes, “The Basics of Plasmonics,” Handbook of Surface Science, Vol. 4, N.V. Richardson and Stephen Holloway, eds. (North-Holland, 2014). Chapter 2, pp. 37–74.
  34. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [Crossref]
  35. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [Crossref]
  36. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  37. R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
    [Crossref]
  38. F. Khalilzadeh-Rezaie, C. J. Fredericksen, W. R. Buchwald, J. W. Cleary, E. M. Smith, I. Rezadad, J. Nath, P. Figueiredo, M. Shahzad, J. Boroumand, M. Yesiltas, G. Medhi, A. Davis, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” MRS Proceedings, 1510 (2013).
  39. V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
    [Crossref]
  40. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
    [Crossref]
  41. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]

2017 (2)

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

2016 (2)

2015 (9)

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

2014 (1)

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

2013 (4)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

2012 (2)

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

2011 (2)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

2010 (2)

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

2006 (1)

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

2000 (1)

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[Crossref]

1981 (2)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Abb, M.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Abouelkhair, H.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

Allen, J. W.

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

Allen, M. S.

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

Atwater, H. A.

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Babicheva, V. E.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Bahoura, M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Boltasseva, A.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.295–297(10), (2010).

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).

Broquin, J.-E.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Brown, T. M.

Buchwald, W.

Chang, R. P. H.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Cheaito, R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Cleary, J. W.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Cooper, T.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

Craig, M. S.

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

Crottini, A.

de Groot, C. H.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

DeLacy, B. G.

Di Carlo, A.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Dominici, L.

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Dutta, A.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Emani, N.

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Eyink, K.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Faist, J.

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

Fischer, M.

Franzen, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Gibson, R.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Gordon, R. G.

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[Crossref]

Gresch, T.

Grzybowski, G.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

Guo, J.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

Guo, P.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Hamilton, T.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Hendrickson, J. R.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

Herminjard, S.

Herzig, H. P.

Homer Reid, M. T.

Hopkins, P. E.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Hsu, C. W.

Ikehata, A.

H. Matsui, A. Ikehata, and H. Tabata, “Asymmetric plasmon structures on ZnO: Ga for high sensitivity in the infrared range,” Appl. Phys. Lett. 109(19), 191601 (2016).
[Crossref]

Ishii, S.

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Kern, P.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Ketterson, J. B.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Khalilzadeh-Rezaie, F.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

Kildishev, A. V.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kim, J.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Kirschner, V.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[Crossref]

Labadie, L.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Labeye, P.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Lavrinenko, A. V.

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Lecoarer, E.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Leedy, K.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

Leedy, K. D.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
[Crossref]

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Li, S. Q.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Lo, G. Q.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[Crossref]

Look, D. C.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Losego, M.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Malagari, S. D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Maria, J.-P.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Matsui, H.

H. Matsui, A. Ikehata, and H. Tabata, “Asymmetric plasmon structures on ZnO: Ga for high sensitivity in the infrared range,” Appl. Phys. Lett. 109(19), 191601 (2016).
[Crossref]

McPhedran, R. C.

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

Memarzadeh, B.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Michelotti, F.

Miller, O. D.

Mosallaei, H.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Mundle, R. M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Muskens, O. L.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Nader, N.

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

J. W. Cleary, N. Nader, K. D. Leedy, and R. Soref, “Tunable short- to mid-infrared perfectly absorbing thin films utilizing conductive zinc oxide on metal,” Opt. Mater. Express 5(9), 1898–1909 (2015).
[Crossref]

Naik, G.

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.295–297(10), (2010).

Nath, J.

Odom, T. W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Oladeji, I. O.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

Papadakis, G. T.

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Papasimakis, N.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Peale, R. E.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

F. Khalilzadeh-Rezaie, I. O. Oladeji, J. W. Cleary, N. Nader, J. Nath, I. Rezadad, and R. E. Peale, “Fluorine-doped tin oxides for mid-infrared plasmonics,” Opt. Mater. Express 5(10), 2184–2192 (2015).
[Crossref]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008).
[Crossref] [PubMed]

Pellaux, J.-P.

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Polimeridis, A. G.

Pradel, A.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Pradhan, A. K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Reale, A.

Rezadad, I.

Rhodes, C.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Santiago, K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Seideman, T.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Sirigu, L.

Skuza, J. R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Smith, E.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

Smith, E. M.

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

Snure, M. R.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Soljacic, M.

Song, K. D.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Soref, R.

Studemann, E.

Tabata, H.

H. Matsui, A. Ikehata, and H. Tabata, “Asymmetric plasmon structures on ZnO: Ga for high sensitivity in the infrared range,” Appl. Phys. Lett. 109(19), 191601 (2016).
[Crossref]

Teranishi, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Tiwari, A.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Vangala, S.

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

Vigreux-Bercovici, C.

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Wang, Y.

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Wasserman, D.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

Wenner, B. R.

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

West, R. R.

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xiao, B.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Zhang, L.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Zhong, Y.

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Zhou, W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[Crossref]

ACS Nano (2)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5(11), 9161–9170 (2011).
[Crossref] [PubMed]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Space Res. (1)

L. Labadie, P. Kern, P. Labeye, E. Lecoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[Crossref]

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Appl. Phys. Lett. (2)

J. R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, and J. W. Cleary, “Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film,” Appl. Phys. Lett. 107(19), 191906 (2015).
[Crossref]

H. Matsui, A. Ikehata, and H. Tabata, “Asymmetric plasmon structures on ZnO: Ga for high sensitivity in the infrared range,” Appl. Phys. Lett. 109(19), 191601 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (2)

N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118(17), 173106 (2015).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100(5), 054905 (2006).
[Crossref]

J. Mod. Opt. (2)

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” J. Mod. Opt. 28(8), 1087–1102 (1981).

L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” J. Mod. Opt. 28(8), 1103–1106 (1981).

J. Nanophotonics (1)

Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, “Review of mid-infrared plasmonic materials,” J. Nanophotonics 9(1), 093791 (2015).
[Crossref]

Laser Photonics Rev. (1)

R. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

MRS Bull. (1)

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull. 25(08), 52–57 (2000).
[Crossref]

Nano Lett. (2)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref] [PubMed]

M. Abb, Y. Wang, N. Papasimakis, C. H. de Groot, and O. L. Muskens, “Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays,” Nano Lett. 14(1), 346–352 (2014).
[Crossref] [PubMed]

Nanophotonics (2)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

V. E. Babicheva, A. Boltasseva, and A. V. Lavrinenko, “Transparent conducting oxides for electro-optical plasmonic modulators,” Nanophotonics 4(1), 165–185 (2015).
[Crossref]

Opt. Eng. (2)

R. E. Peale, E. Smith, H. Abouelkhair, I. O. Oladeji, S. Vangala, T. Cooper, G. Grzybowski, F. Khalilzadeh-Rezaie, and J. W. Cleary, “Electrodynamic properties of aqueous spray deposited SnO2:F films for infrared plasmonics,” Opt. Eng. 56(3), 037109 (2017).
[Crossref]

M. S. Allen, J. W. Allen, B. R. Wenner, D. C. Look, and K. D. Leedy, “Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides,” Opt. Eng. 52(6), 064603 (2013).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (2)

Phys. Rev. B (1)

G. T. Papadakis and H. A. Atwater, “Field-effect induced tunability in hyperbolic metamaterials,” Phys. Rev. B 92(18), 184101 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[Crossref]

Proc. SPIE (2)

J. W. Cleary, R. Gibson, E. M. Smith, S. Vangala, I. O. Oladeji, F. Khalilzadeh-Rezaie, K. Leedy, and R. E. Peale, “Infrared photonic to plasmonic couplers using spray deposited conductive metal oxides,” Proc. SPIE 10105, 101050 (2017).

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Deterministic IR surface plasmon properties in doped zinc oxides,” Proc. SPIE 8545, 85450 (2012).

Sci. Rep. (1)

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4(1), 6415 (2015).
[Crossref] [PubMed]

Other (6)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett.99(15), 151114 (2011).
[Crossref]

G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi Rapid Res. Lett.295–297(10), (2010).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

I. R. Hooper and W. L. Barnes, “The Basics of Plasmonics,” Handbook of Surface Science, Vol. 4, N.V. Richardson and Stephen Holloway, eds. (North-Holland, 2014). Chapter 2, pp. 37–74.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

F. Khalilzadeh-Rezaie, C. J. Fredericksen, W. R. Buchwald, J. W. Cleary, E. M. Smith, I. Rezadad, J. Nath, P. Figueiredo, M. Shahzad, J. Boroumand, M. Yesiltas, G. Medhi, A. Davis, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” MRS Proceedings, 1510 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images at a magnification of 5000X for (a) 20 µm period FTO, (b) 10 µm period FTO, (c) 20 µm period GZO, and (d) 10 µm period GZO gratings.
Fig. 2
Fig. 2 Measured complex permittivities for FTO (black), lo-GZO (blue), hi-GZO, (grey) films along with the corresponding characteristic lengths for SPPs calculated from complex permittivities with a dielectric medium of air.
Fig. 3
Fig. 3 Simulated specular reflection of a FTO grating (ΛLWIR = 20 µm) with duty cycle matching the fabricated structures but with a rectangular profile. Even orders are stronger than seen in experiment due to the rectangular profile.
Fig. 4
Fig. 4 Angular spectra of FTO grating (left) and lo-GZO grating (right). The grey dashed line separates the different grating periods, Λ = 20 µm (top) and 10 µm (bottom). Each spectrum is offset vertically by 0.5 and corresponds to a different wavelength as indicated. The calculated SPP excitation resonances from Eq. (4) are represented by symbols for m = 1 or m = −3, as indicated.
Fig. 5
Fig. 5 Wavelength sweep comparison of the m = −3 resonance for 1% FTO (black) and 0.5% GZO (blue). Green triangles represent the calculated location of the SPP excitation. MWIR (dashed lines) spectra are at an angle of incidence of 25° with a grating period of 10 µm and the LWIR spectra (solid lines) are at an angle of 20° with a grating period of 20 µm.
Fig. 6
Fig. 6 (a) Derivative of the m = 1 resonance of the FTO grating. Dotted lines are from FDTD simulation while solid lines represent measured data. (b). Maximum magnitude of the derivative for each grating and both m = 1 (bottom) and −3 (top) resonances and for both grating periods, Λ = 10 µm (left) and 20 µm (right). Open symbols represent FDTD simulations while closed symbols represent the measured data.

Tables (1)

Tables Icon

Table 1 Electrical Properties of FTO and GZO

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L x = [ 2Im( k SPP ) ]   1
k SPP =  2π λ ε d ε c ε d + ε c  .
L d,c =  [ 2π λ Re( ε d,c 2 ε d + ε c ) ] 1 .
Re[ k SPP ]sign( m )= 2π λ [ sinθ+ mλ Λ ].
R=1  4 γ r γ i ( k SPP 2 k x 2 ) 2 + ( γ r + γ i ) 2 .

Metrics