Abstract

Circular, buried depressed-cladding waveguides were inscribed by direct fs-laser beam writing in diffusion-bonded Nd:YAG/Cr4+:YAG composite media. Passive Q-switch operation was achieved using the pump at 807 nm with a fiber-coupled diode laser. Laser pulses at 1.06 μm with energy of 15.7 μJ and 3.9-ns duration (corresponding to a peak power of 4.0 kW) were obtained from a waveguide of 150-μm diameter that was realized in a 10.3-mm long, 1.0-at.% Nd:YAG/Cr4+:YAG composite medium. The length of Nd:YAG crystal was 7.0 mm and initial transmission of Cr4+:YAG saturable absorber crystal was 0.70. The average output power reached 1.13 W.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel
Opt. Express 22(5) 5177-5182 (2014)

Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique

Gabriela Salamu, Florin Jipa, Marian Zamfirescu, and Nicolaie Pavel
Opt. Mater. Express 4(4) 790-797 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
    [Crossref]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  4. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [Crossref]
  5. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [Crossref]
  6. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  7. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref] [PubMed]
  8. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [Crossref] [PubMed]
  9. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
    [Crossref] [PubMed]
  10. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
    [Crossref] [PubMed]
  11. N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
    [Crossref] [PubMed]
  12. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  13. S. Müller, T. Calmano, P. Metz, N.-O. Hansen, C. Kränkel, and G. Huber, “Femtosecond-laser-written diode-pumped Pr:LiYF4 waveguide laser,” Opt. Lett. 37(24), 5223–5225 (2012).
    [Crossref] [PubMed]
  14. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  15. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  16. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  17. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-Level Output Power Operation from Diode-Laser Pumped Circular Buried Depressed-Cladding Waveguides Inscribed in Nd:YAG by Direct Femtosecond-Laser Writing,” IEEE Photonics J. 8(1), 1500209 (2016).
    [Crossref]
  18. G. Salamu and N. Pavel, “Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing,” Opt. Laser Technol. 84, 149–154 (2016).
    [Crossref]
  19. Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
    [Crossref] [PubMed]
  20. W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
    [Crossref] [PubMed]
  21. A. Okhrimchuk, “Femtosecond fabrication of waveguides in ion-doped laser crystals,” in Coherence and Ultrashort Pulse Laser Emission, Dr. F. J. Duarte, ed. (Intech, 2010). http://www.intechopen.com/books/coherence-and-ultrashort-pulse-laser-emission/femtosecond-fabrication-of-waveguides-in-ion-doped-laser-crystals .
  22. T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Q-Switched operation of a fs-laser written Nd:YAG/Cr4+:YAG monolithic waveguide laser,“ in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper IF2A.4.
    [Crossref]
  23. T. Calmano, S. Müller, C. Kränkel, and G. Huber, “Multi-Watt Continuous Wave Output Power and Q-switched Laser Operation of Femtosecond-Laser Inscribed Yb:YAG Based Waveguides,“ 6th EPS-QEOD Europhoton Conference, Solid State, Fibre, and Waveguide Coherent Light Sources, 24-29 August, 2014, Neuchâtel, Switzerland, presentation WeD-T2-O-05.
  24. Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
    [Crossref] [PubMed]
  25. S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
    [Crossref] [PubMed]
  26. R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
    [Crossref]
  27. A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5(1), 11172 (2015).
    [Crossref] [PubMed]
  28. C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, and J. Blanca del Rosal Rabes, “Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
    [Crossref]
  29. Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24(3), 2858–2866 (2016).
    [Crossref] [PubMed]
  30. C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
    [Crossref] [PubMed]
  31. M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Kränkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
    [Crossref]
  32. S. Hakobyan, V. J. Wittwer, K. Hasse, C. Kränkel, T. Südmeyer, and T. Calmano, “Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power,” Opt. Lett. 41(20), 4715–4718 (2016).
    [Crossref] [PubMed]
  33. W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
    [Crossref] [PubMed]
  34. A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr(4+) crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett. 34(24), 3881–3883 (2009).
    [Crossref] [PubMed]

2017 (1)

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

2016 (9)

C. Grivas, “Optically pumped planar waveguide lasers, Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-Level Output Power Operation from Diode-Laser Pumped Circular Buried Depressed-Cladding Waveguides Inscribed in Nd:YAG by Direct Femtosecond-Laser Writing,” IEEE Photonics J. 8(1), 1500209 (2016).
[Crossref]

G. Salamu and N. Pavel, “Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing,” Opt. Laser Technol. 84, 149–154 (2016).
[Crossref]

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, and J. Blanca del Rosal Rabes, “Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24(3), 2858–2866 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Kränkel, and F. Rotermund, “Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation,” Opt. Mater. Express 6(8), 2468–2474 (2016).
[Crossref]

S. Hakobyan, V. J. Wittwer, K. Hasse, C. Kränkel, T. Südmeyer, and T. Calmano, “Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power,” Opt. Lett. 41(20), 4715–4718 (2016).
[Crossref] [PubMed]

2015 (3)

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5(1), 11172 (2015).
[Crossref] [PubMed]

2014 (5)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (4)

2011 (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

2010 (3)

2009 (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

A. G. Okhrimchuk, V. K. Mezentsev, V. V. Dvoyrin, A. S. Kurkov, E. M. Sholokhov, S. K. Turitsyn, A. V. Shestakov, and I. Bennion, “Waveguide-saturable absorber fabricated by femtosecond pulses in YAG:Cr(4+) crystal for Q-switched operation of Yb-fiber laser,” Opt. Lett. 34(24), 3881–3883 (2009).
[Crossref] [PubMed]

2005 (1)

1996 (1)

Ahn, K. J.

Akhmadaliev, S.

Baek, I. H.

Beecher, S.

Bennion, I.

Blanca del Rosal Rabes, J.

Brown, G.

Calmano, T.

Cantelar, E.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Castillo, G. R.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

Chen, F.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24(3), 2858–2866 (2016).
[Crossref] [PubMed]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Chen, Y.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Cheng, C.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, and J. Blanca del Rosal Rabes, “Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

Choi, S. Y.

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Davis, K. M.

Dvoyrin, V. V.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Guo, Z.

Hakobyan, S.

Hansen, N.-O.

Hao, X.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Hasse, K.

He, R.

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Hirao, K.

Huber, G.

Jaque, D.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jaque, F.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Jia, Y.

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Jipa, F.

Kar, A. K.

Khrushchev, I.

Kim, M. H.

Kränkel, C.

Kurkov, A. S.

Lamela, J.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Lee, B. J.

Li, R.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Lifante, G.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Liu, F.

Liu, H.

Lu, Q.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Luan, Q.

Ma, L.

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Metz, P.

Mezentsev, V.

Mezentsev, V. K.

Mitchell, J.

Miura, K.

Müller, S.

Nie, W.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, and J. Blanca del Rosal Rabes, “Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
[Crossref]

Obraztsov, P. A.

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5(1), 11172 (2015).
[Crossref] [PubMed]

Okhrimchuk, A.

Okhrimchuk, A. G.

Pavel, N.

G. Salamu and N. Pavel, “Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing,” Opt. Laser Technol. 84, 149–154 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-Level Output Power Operation from Diode-Laser Pumped Circular Buried Depressed-Cladding Waveguides Inscribed in Nd:YAG by Direct Femtosecond-Laser Writing,” IEEE Photonics J. 8(1), 1500209 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref] [PubMed]

Petermann, K.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Rabes, B. R.

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

Ren, Y.

Rodenas, A.

Ródenas, A.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Romero, C.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Roso, L.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Rotermund, F.

Salamu, G.

G. Salamu and N. Pavel, “Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing,” Opt. Laser Technol. 84, 149–154 (2016).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-Level Output Power Operation from Diode-Laser Pumped Circular Buried Depressed-Cladding Waveguides Inscribed in Nd:YAG by Direct Femtosecond-Laser Writing,” IEEE Photonics J. 8(1), 1500209 (2016).
[Crossref]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref] [PubMed]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

Shang, Z.

Shestakov, A.

Shestakov, A. V.

Sholokhov, E. M.

Siebenmorgen, J.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

Südmeyer, T.

Sugimoto, N.

Tan, Y.

C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, and J. Blanca del Rosal Rabes, “Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing,” Opt. Mater. Express 6(2), 367–373 (2016).
[Crossref]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24(3), 2858–2866 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Thomson, R. R.

Torchia, G. A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

Turitsyn, S. K.

Vázquez de Aldana, J. R.

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Wittwer, V. J.

Yeom, D.-I.

Zamfirescu, M.

Zhang, H.

Zhou, S.

Appl. Phys. B (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[Crossref]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[Crossref]

IEEE Photonics J. (1)

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Watt-Level Output Power Operation from Diode-Laser Pumped Circular Buried Depressed-Cladding Waveguides Inscribed in Nd:YAG by Direct Femtosecond-Laser Writing,” IEEE Photonics J. 8(1), 1500209 (2016).
[Crossref]

Laser Photonics Rev. (2)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Opt. Express (9)

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20(4), 3832–3843 (2012).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Tan, Q. Luan, F. Liu, F. Chen, and J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013).
[Crossref] [PubMed]

N. Pavel, G. Salamu, F. Jipa, and M. Zamfirescu, “Diode-laser pumping into the emitting level for efficient lasing of depressed cladding waveguides realized in Nd:YVO4 by the direct femtosecond-laser writing technique,” Opt. Express 22(19), 23057–23065 (2014).
[Crossref] [PubMed]

S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Kränkel, G. Huber, and F. Rotermund, “Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes,” Opt. Express 23(6), 7999–8005 (2015).
[Crossref] [PubMed]

Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, and F. Chen, “Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous,” Opt. Express 24(3), 2858–2866 (2016).
[Crossref] [PubMed]

C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide,” Opt. Express 24(10), 10385–10390 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

G. Salamu and N. Pavel, “Power scaling from buried depressed-cladding waveguides realized in Nd:YVO4 by femtosecond-laser beam writing,” Opt. Laser Technol. 84, 149–154 (2016).
[Crossref]

Opt. Lett. (6)

Opt. Mater. (1)

R. He, J. R. Vázquez de Aldana, and F. Chen, “Passively Q-switched Nd:YVO4 waveguide laser using graphene as a saturable absorber,” Opt. Mater. 46, 414–417 (2015).
[Crossref]

Opt. Mater. Express (3)

Prog. Quantum Electron. (2)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

C. Grivas, “Optically pumped planar waveguide lasers, Part II: Gain media, laser systems, and applications,” Prog. Quantum Electron. 45–46, 3–160 (2016).
[Crossref]

Sci. Rep. (4)

A. G. Okhrimchuk and P. A. Obraztsov, “11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene,” Sci. Rep. 5(1), 11172 (2015).
[Crossref] [PubMed]

W. Nie, R. Li, C. Cheng, Y. Chen, Q. Lu, C. Romero, J. R. Vázquez de Aldana, X. Hao, and F. Chen, “Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials,” Sci. Rep. 7, 46162 (2017).
[Crossref] [PubMed]

Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. R. Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4(1), 5988 (2014).
[Crossref] [PubMed]

W. Nie, Y. Jia, J. R. Vázquez de Aldana, and F. Chen, “Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription,” Sci. Rep. 6(1), 22310 (2016).
[Crossref] [PubMed]

Other (3)

A. Okhrimchuk, “Femtosecond fabrication of waveguides in ion-doped laser crystals,” in Coherence and Ultrashort Pulse Laser Emission, Dr. F. J. Duarte, ed. (Intech, 2010). http://www.intechopen.com/books/coherence-and-ultrashort-pulse-laser-emission/femtosecond-fabrication-of-waveguides-in-ion-doped-laser-crystals .

T. Calmano, A.-G. Paschke, S. Müller, C. Kränkel, and G. Huber, “Q-Switched operation of a fs-laser written Nd:YAG/Cr4+:YAG monolithic waveguide laser,“ in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper IF2A.4.
[Crossref]

T. Calmano, S. Müller, C. Kränkel, and G. Huber, “Multi-Watt Continuous Wave Output Power and Q-switched Laser Operation of Femtosecond-Laser Inscribed Yb:YAG Based Waveguides,“ 6th EPS-QEOD Europhoton Conference, Solid State, Fibre, and Waveguide Coherent Light Sources, 24-29 August, 2014, Neuchâtel, Switzerland, presentation WeD-T2-O-05.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Photos of two circular buried depressed-cladding waveguides inscribed in Nd:YAG/Cr4+:YAG composite media are shown. Microscope view of (a) DWG-Q1 (ϕ = 150 μm) and (b) DWG-Q2 (ϕ = 100 μm). Photo taken during the optical pump of (c) DWG-Q1 and (d) DWG-Q2. (e) Photo from top of DWG-Q1; the waveguide position is visible in both Nd:YAG active medium and in Cr4+:YAG SA.
Fig. 2
Fig. 2 Average output power, Pave at 1.06 μm versus the absorbed pump power, Pabs at 807 nm yielded by the waveguide DWG-Q1 (NYAG-1 of T0 = 0.85). T is the OCM transmission.
Fig. 3
Fig. 3 Characteristics of Q-switch operation obtained from all circular, buried depressed-cladding waveguides, OCM with T = 0.40. (a) Average output power, Pave. The laser pulse temporal shape and the laser beam near-field distribution are shown at the indicated point. (b) Laser pulse repetition rate. (c) Laser pulse energy, Ep and corresponding peak power, Pp.

Tables (1)

Tables Icon

Table 1 Characteristics of laser pulses at 1.06 μm obtained from the circular, buried depressed-cladding waveguides investigated in this work, OCM with T = 0.40.

Metrics