Abstract

The interference between the long range surface plasmon (LRSP) mode and cladding mode in a gold stripe waveguide is theoretically investigated and experimentally demonstrated. Epoxy polymer SU-8 is used as the dielectric cladding. Long period relief gratings are formed on the SU-8 top surface by ultraviolet light bleaching. The cladding mode, which is excited due to the field mismatch between the LRSP mode and the lead-in fiber mode, interferes with the guiding mode supported by the surface plasmon waveguide. A sinusoidal interference pattern with a contrast ratio of over 12 dB is experimentally observed. Because of the diffraction of introduced SU-8 gratings at the leading edge of waveguide, dips in the transmission spectrum shift continuously with the input fiber position deviation. This waveguide mode interferometer has potential applications in plasmonic waveguide sensors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of grating-coupled long range surface plasmon polariton membrane waveguides

Norman R. Fong, Pierre Berini, and R. Niall Tait
Opt. Express 23(13) 17421-17430 (2015)

Long-range surface plasmon polariton waveguides embedded in fluorinated polymer

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr.
Appl. Opt. 47(21) 3892-3900 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
    [Crossref]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [Crossref]
  3. B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
    [Crossref]
  4. Q. Liu and K. S. Chiang, “Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide,” Opt. Express 18(9), 8963–8968 (2010).
    [Crossref] [PubMed]
  5. J. Lee, F. Lu, and M. A. Belkin, “Broadly wavelength tunable bandpass filters based on long-range surface plasmon polaritons,” Opt. Lett. 36(19), 3744–3746 (2011).
    [Crossref] [PubMed]
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [Crossref]
  7. W. R. Wong, F. R. M. Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23(24), 31098–31108 (2015).
    [Crossref] [PubMed]
  8. H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
    [Crossref]
  9. J. N. Dash, R. Jha, J. Villatoro, and S. Dass, “Nano-displacement sensor based on photonic crystal fiber modal interferometer,” Opt. Lett. 40(4), 467–470 (2015).
    [Crossref] [PubMed]
  10. A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
    [Crossref]
  11. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
    [Crossref]
  12. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  13. M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
    [Crossref]
  14. J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
    [Crossref]
  15. L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
    [Crossref]
  16. X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
    [Crossref]
  17. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref] [PubMed]
  18. Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
    [Crossref]
  19. T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
    [Crossref]
  20. X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
    [Crossref] [PubMed]

2016 (2)

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

2015 (2)

2014 (2)

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

2013 (1)

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

2012 (3)

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2007 (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

2006 (3)

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[Crossref]

2003 (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
[Crossref]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Adikan, F. R. M.

Banan, B.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

Belkin, M. A.

Berini, P.

W. R. Wong, F. R. M. Adikan, and P. Berini, “Long-range surface plasmon Y-junctions for referenced biosensing,” Opt. Express 23(24), 31098–31108 (2015).
[Crossref] [PubMed]

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Bock, W. J.

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[Crossref]

Brabant, D.

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

Callender, C. L.

J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
[Crossref]

Cardenas-Sevilla, G. A.

Chan, C. T.

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Chen, C. M.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Chen, J.

Chiang, K. S.

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Chung, Y.

Dash, J. N.

Dass, S.

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Eftimov, T.

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

Eftimov, T. A.

Fan, X.

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Gagnon, G.

Hai, M. S.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

He, G. B.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Hwang, D.

Jacob, S.

J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
[Crossref]

Jha, R.

Ji, L. T.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Jiang, J.

J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
[Crossref]

Johnson, E. G.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
[Crossref]

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Lahoud, N.

Lee, J.

Lee, J. C.

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Liboiron-Ladouceur, O.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

Lisicka-Skrzek, E.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

Liu, Q.

Liu, T.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

Lu, F.

Martinez-Rios, A.

Mattiussi, G. A.

Mehta, A.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
[Crossref]

Mikulic, P.

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27(17), 3933–3939 (2009).
[Crossref]

Mohammed, W.

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
[Crossref]

Monzon-Hernandez, D.

Moon, D. S.

Moon, S.

Nguyen, L. V.

Oh, C. H.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Park, S.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Salceda-Delgado, G.

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Smietana, M.

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 125–130 (2012).
[Crossref]

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Sun, J.

Sun, X. Q.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Villatoro, J.

Wang, F.

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Wang, G. P.

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Wang, X. B.

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

Wong, W. R.

Xie, Y.

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

Yi, Y. J.

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Zhang, D. M.

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

X. B. Wang, J. Sun, C. M. Chen, X. Q. Sun, F. Wang, and D. M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
[Crossref]

Zhang, M. L.

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

Zhao, X. L.

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. S. Won, K. C. Kim, S. H. Song, C. H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[Crossref]

IEEE Photonic. Tech. L. (1)

A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference waveguide fiber-optic displacement sensor,” IEEE Photonic. Tech. L. 15(8), 1129–1131 (2003).
[Crossref]

IEEE Photonics J. (1)

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multichannel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photonics J. 5(3), 2201811 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Jiang, C. L. Callender, and S. Jacob, “Long-period gratings based on surface plasmon polariton waveguides in fluorinated polymer,” IEEE Photonics Technol. Lett. 24(23), 2169–2171 (2012).
[Crossref]

L. T. Ji, T. Liu, G. B. He, X. Q. Sun, X. B. Wang, Y. J. Yi, C. M. Chen, F. Wang, and D. M. Zhang, “UV-written long-period grating based on long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (2)

Y. Xie, T. Liu, X. L. Zhao, M. L. Zhang, C. M. Chen, F. Wang, X. Q. Sun, and D. M. Zhang, “Fabrication of long-range surface plasmon polaritons waveguide by wet chemical etching,” J. Opt. 16(6), 065006 (2014).
[Crossref]

T. Liu, L. T. Ji, G. B. He, X. Q. Sun, Y. J. Yi, X. B. Wang, F. Wang, and D. M. Zhang, “Transmission of long-range surface plasmon-polaritons across gap in Au waveguide,” J. Opt. 18(1), 015006 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Phys. Rev. Lett. (1)

X. Fan, G. P. Wang, J. C. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Schematic diagram of proposed LRSP waveguide intermodal interferometer, and (b) mechanism of SU-8 grating assisted end-fire excitation of LRSP mode. The LRSP mode can be excited even as the input fiber deviates from the Au stripe end facet along y direction due to the introduced SU-8 gratings.
Fig. 2
Fig. 2 Calculated field distribution of (a) fundamental LRSP mode, and (b) cladding modes with parameters of Au thickness d = 25 nm, Au stripe width w = 5 μm, and SU-8 thickness t = 10 μm.
Fig. 3
Fig. 3 Duty cycle of SU-8 gratings as a function of UV light exposure dose. The light intensity and SU-8 film thickness are 14 mW/cm2 and 10 μm, respectively.
Fig. 4
Fig. 4 AFM image of corrugations on the SU-8 film surface with a period of Λ = 36 μm and a duty cycle of 0.5.
Fig. 5
Fig. 5 AFM image of fabricated gold stripe on the SU-8 bottom cladding. The thickness and width of the gold stripe are 24 nm and 5 μm, respectively.
Fig. 6
Fig. 6 Experimental setup for intermodal interferometer performance characterization. The broadband light output from ASE source is launched into the device by end-fire coupling method. The output light is coupled into OSA to record the transmission spectrum.
Fig. 7
Fig. 7 Far-field light output from the intermodal interferometer when the input SM fiber is centrally aligned to the Au stripe waveguide end facet.
Fig. 8
Fig. 8 Optical transmission spectra of a 5-μm wide gold stripe waveguide with surface relief gratings when the input SM fiber deviates from the Au stripe waveguide end facet. The position deviation ranges from 0 to 12 μm.
Fig. 9
Fig. 9 Far-field light output from the intermodal interferometer when the input SM fiber position deviation df is 21 μm.
Fig. 10
Fig. 10 Optical transmission spectra of a 5-μm wide gold stripe waveguide with surface relief gratings when the input SM fiber deviates from the Au stripe waveguide end facet. The position deviation ranges from 19 to 23 μm.
Fig. 11
Fig. 11 Spacial frequency distributions of transmission spectra when the position deviation is 4, 6, 19, and 21 μm, respectively.
Fig. 12
Fig. 12 Resonance wavelength shift as a function of df with a high sensitivity of 1.7 nm/μm.
Fig. 13
Fig. 13 (a) Transmission spectrum of a 5-μm wide gold stripe waveguide with surface relief gratings when the input SM fiber deviates from the Au stripe waveguide end facet. The position deviation varies from 34 to 60 μm, (b) corresponding spacial frequency distributions of transmission spectrum when df is 34 and 60 μm.
Fig. 14
Fig. 14 (a) Transmission spectrum of a 5-μm wide gold stripe waveguide without surface relief gratings, the insets exhibit far field light outputs when df is 0 and 1 μm, respectively, (b) corresponding spacial frequency distributions of transmission spectra of Fig. 14(a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I L R S P + I c l a d + 2 I L R S P I c l a d cos ( ϕ )
ϕ = 2 π ( n L R S P n c l a d ) L λ = 2 π Δ n e f f L λ
Δ λ λ 2 Δ n e f f L

Metrics