Abstract

Transition-metal-doped II-VI semiconductors possess a unique blend of physical, spectroscopic, optical, and technological parameters. These materials enable high power lasers in important middle-infrared range. Furthermore, they combine superb ultra-fast laser capabilities with high nonlinearity and polycrystalline microstructure, which provides random quasi-phase matching. We developed flexible design of femtosecond polycrystalline Cr:ZnS and Cr:ZnSe lasers and amplifiers in the spectral range 2–3 µm. We obtained few-optical-cycle pulses with a multi-Watt average power in a very broad range of repetition rates 0.07–1.2 GHz. We also report on efficient nonlinear frequency conversion directly in the polycrystalline gain elements of ultra-fast lasers and amplifiers including second harmonic generation with sub-Watt power and generation of an octave-spanning middle-infrared supercontinuum.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 24(2) 1616-1623 (2016)

Middle-IR frequency comb based on Cr:ZnS laser

Sergey Vasilyev, Viktor Smolski, Jeremy Peppers, Igor Moskalev, Mike Mirov, Yury Barnakov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 27(24) 35079-35087 (2019)

Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr2+:ZnS laser

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Lett. 40(21) 5054-5057 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
    [Crossref]
  2. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm,” Optica 3(2), 147–150 (2016).
    [Crossref]
  3. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
    [Crossref] [PubMed]
  4. S. Wandel, M. Lin, Y. Yin, G. Xu, and I. Jovanovic, “Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2,” Opt. Express 24(5), 5287–5299 (2016).
    [Crossref]
  5. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  6. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
    [Crossref]
  7. K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
    [Crossref]
  8. I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
    [Crossref] [PubMed]
  9. F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
    [Crossref]
  10. E. Slobodchikov, L. R. Chieffo, and K. F. Wall, “High peak power ultrafast Cr:ZnSe oscillator and power amplifier,” Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices, 972603 (March 16, 2016).
  11. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
    [Crossref]
  12. H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
    [Crossref]
  13. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [Crossref]
  14. E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
    [Crossref]
  15. E. Yu. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
    [Crossref]
  16. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
    [Crossref] [PubMed]
  17. E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.
    [Crossref]
  18. E. Sorokin, N. Tolstik, and I. T. Sorokina, “Femtosecond operation and self-doubling of Cr:ZnS laser,” in Nonlinear Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NThC1.
    [Crossref]
  19. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).
  20. M. Durand, A. Houard, K. Lim, A. Durécu, O. Vasseur, and M. Richardson, “Study of filamentation threshold in zinc selenide,” Opt. Express 22(5), 5852–5858 (2014).
    [Crossref] [PubMed]
  21. H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
    [Crossref] [PubMed]
  22. E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
    [Crossref] [PubMed]
  23. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr(2+):ZnSe laser at 2420 nm,” Opt. Lett. 34(20), 3056–3058 (2009).
    [Crossref] [PubMed]
  24. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013).
    [Crossref] [PubMed]
  25. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
    [Crossref]
  26. S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
    [Crossref] [PubMed]
  27. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
    [Crossref] [PubMed]
  28. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-Lens Mode-Locked Middle IR Polycrystalline Cr:ZnS Laser with a Repetition Rate 1.2 GHz,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper AW1A.2.
    [Crossref]
  29. U. Keller, “2.1 Ultrafast solid-state lasers,” in Laser Physics and Applications, G. Herziger, H. Weber, R. Poprawe, ed. (Springer Materials, 2007).
  30. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
    [Crossref] [PubMed]
  31. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “7 W Few-Cycle Mid-Infrared Laser Source at 79 MHz Repetition Rate,” in High-Brightness Sources and Light-Driven Interactions, OSA technical Digest (online) (Optical Society of America, 2016), paper MT2C.4.
    [Crossref]
  32. S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-Lens Mode-Locked Polycrystalline Cr2+:ZnS Laser with 0.5 MW Peak Power,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.3.
  33. Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. Mirov, and K. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
    [Crossref]

2017 (1)

2016 (8)

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm,” Optica 3(2), 147–150 (2016).
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, and A. Pugžlys, “Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier,” Opt. Lett. 41(5), 930–933 (2016).
[Crossref] [PubMed]

S. Wandel, M. Lin, Y. Yin, G. Xu, and I. Jovanovic, “Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2,” Opt. Express 24(5), 5287–5299 (2016).
[Crossref]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

2015 (5)

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40(6), 1069–1072 (2015).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (1)

2010 (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

2009 (1)

2004 (2)

E. Yu. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

2001 (1)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

1998 (1)

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

1997 (1)

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Apolonski, A.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Bae, S.

Baltuška, A.

Baudisch, M.

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Biegert, J.

D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 µm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm,” Optica 3(2), 147–150 (2016).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Cankaya, H.

Chalus, O.

Chang, C.-L.

Chen, X.

Chirkin, A. S.

E. Yu. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Cizmeciyan, M. N.

Cousin, S. L.

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Durand, M.

Durécu, A.

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Firsov, K.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Firsov, V. V.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Frolov, M.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Frolov, M. P.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Gapontsev, V.

Gavrishchuk, E.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Gordienko, V. M.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Grynko, R.

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Hemmer, M.

Holzwarth, R.

Hong, B. H.

Hong, K.-H.

Hoogland, H.

Houard, A.

Hvam, J. M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Ito, R.

Jovanovic, I.

Kaminskii, A. A.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Kanai, T.

Karpowicz, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kärtner, F. X.

Kazantsev, S.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Kim, J. W.

Kitamoto, A.

Kondo, T.

Kononov, I.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Korostelin, Yu.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Korostelin, Yu. V.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Kozlovsky, V. I.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Krausz, F.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Krogen, P.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kühnelt, M.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Kupecek, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Kurt, A.

Langbein, W.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Lee, N.

Lemasson, P.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Liang, H.

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Lim, K.

Lin, M.

Malevich, P.

Maneshkin, A.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Migal, E. A.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Mirov, M.

Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. Mirov, and K. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
[Crossref] [PubMed]

Mirov, S.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Morozov, E. Yu.

E. Yu. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Novak, O.

Paasch-Colberg, T.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Pervak, V.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pescher, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Podmar’kov, Yu. P.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Potemkin, F. V.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Pronin, O.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pugžlys, A.

Pupeza, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pushkin, A. V.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Richardson, M.

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Rotermund, F.

Ru, Q.

Sanchez, D.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Schaffers, K. I.

Schunemann, P.

Schweinberger, W.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Sennaroglu, A.

Shim, B.

Shirane, M.

Shoji, I.

Simon-Boisson, C.

Sirotkin, A. A.

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

Smolski, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
[Crossref] [PubMed]

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

E. Sorokin, N. Tolstik, K. I. Schaffers, and I. T. Sorokina, “Femtosecond SESAM-modelocked Cr:ZnS laser,” Opt. Express 20(27), 28947–28952 (2012).
[Crossref] [PubMed]

Stein, G. J.

Tolstik, N.

Tsoy, G.

Vasilyev, S.

Q. Ru, N. Lee, X. Chen, K. Zhong, G. Tsoy, M. Mirov, S. Vasilyev, S. Mirov, and K. Vodopyanov, “Optical parametric oscillation in a random polycrystalline medium,” Optica 4(6), 617–618 (2017).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

I. Moskalev, S. Mirov, M. Mirov, S. Vasilyev, V. Smolski, A. Zakrevskiy, and V. Gapontsev, “140 W Cr:ZnSe laser system,” Opt. Express 24(18), 21090–21104 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Three optical cycle mid-IR Kerr-lens mode-locked polycrystalline Cr(2+):ZnS laser,” Opt. Lett. 40(21), 5054–5057 (2015).
[Crossref] [PubMed]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Opt. Express 22(5), 5118–5123 (2014).
[Crossref] [PubMed]

Vasseur, O.

Velikanov, S.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Vodopyanov, K.

Wagner, H. P.

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Wandel, S.

Weerawarne, D.

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Xu, G.

Yin, Y.

Yusupov, D. B.

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Yutkin, I.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Zakrevskiy, A.

Zaretsky, N.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Zawilski, K.

Zhang, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zhong, K.

Znakovskaya, I.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zotov, E.

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II-VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

E. Yu. Morozov, A. A. Kaminskii, A. S. Chirkin, and D. B. Yusupov, “Second optical harmonic generation in nonlinear crystals with a disordered domain structure,” JETP Lett. 73(12), 647–650 (2001).
[Crossref]

Laser Photonics Rev. (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Laser Phys. Lett. (2)

F. V. Potemkin, E. A. Migal, A. V. Pushkin, A. A. Sirotkin, V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, V. V. Firsov, M. P. Frolov, and V. M. Gordienko, “Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+:ZnSe with optical pumping by a solid-state 3 µm laser,” Laser Phys. Lett. 13(12), 125403 (2016).
[Crossref]

K. Firsov, M. Frolov, E. Gavrishchuk, S. Kazantsev, I. Kononov, Yu. Korostelin, A. Maneshkin, S. Velikanov, I. Yutkin, N. Zaretsky, and E. Zotov, “Laser on single-crystal ZnSe:Fe with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13(1), 015002 (2016).
[Crossref]

Nat. Photonics (1)

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W. Schweinberger, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Optica (2)

Phys. Rev. B (1)

H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam, “Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS,” Phys. Rev. B 58(16), 10494–10501 (1998).
[Crossref]

Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Mid-IR Kerr-lens mode-locked polycrystalline Cr:ZnS and Cr:ZnSe lasers with intracavity frequency conversion via random quasi-phase-matching,” Proc. SPIE 9731. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV, 97310B (2016).

Quantum Electron. (1)

E. Yu. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34(3), 227–232 (2004).
[Crossref]

Other (7)

E. Sorokin and I. T. Sorokina, “Femtosecond Operation and Random Quasi-Phase-Matched Self-Doubling of Ceramic Cr:ZnSe Laser,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuGG2.
[Crossref]

E. Sorokin, N. Tolstik, and I. T. Sorokina, “Femtosecond operation and self-doubling of Cr:ZnS laser,” in Nonlinear Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper NThC1.
[Crossref]

E. Slobodchikov, L. R. Chieffo, and K. F. Wall, “High peak power ultrafast Cr:ZnSe oscillator and power amplifier,” Proc. SPIE 9726, Solid State Lasers XXV: Technology and Devices, 972603 (March 16, 2016).

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “7 W Few-Cycle Mid-Infrared Laser Source at 79 MHz Repetition Rate,” in High-Brightness Sources and Light-Driven Interactions, OSA technical Digest (online) (Optical Society of America, 2016), paper MT2C.4.
[Crossref]

S. Vasilyev, M. Mirov, and V. Gapontsev, “Mid-IR Kerr-Lens Mode-Locked Polycrystalline Cr2+:ZnS Laser with 0.5 MW Peak Power,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper AW4A.3.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolski, S. Mirov, and V. Gapontsev, “Kerr-Lens Mode-Locked Middle IR Polycrystalline Cr:ZnS Laser with a Repetition Rate 1.2 GHz,” in Lasers Congress 2016 (ASSL, LSC, LAC), OSA Technical Digest (online) (Optical Society of America, 2016), paper AW1A.2.
[Crossref]

U. Keller, “2.1 Ultrafast solid-state lasers,” in Laser Physics and Applications, G. Herziger, H. Weber, R. Poprawe, ed. (Springer Materials, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 RT absorption (black) and emission (red) cross-sections of ZnS and ZnSe doped with Cr2+ ions (dashed and solid curves respectively). Black vertical arrows show the standard schemes of optical pumping of Cr:ZnS and Cr:ZnSe lasers.
Fig. 2
Fig. 2 (a) Microstructure of polycrystalline Cr:ZnS with ~30 µm average size of the grain (the sample is optimized for high SHG yield, the batch was annealed at 950 °C during 2 weeks); (b) microstructure of polycrystalline Cr:ZnSe with ~500 µm average size of the grain (the sample is designed of suppression of the up-conversion via three-wave mixing, the batch was annealed at 1000 °C during 3 weeks); (c) state of the art in Cr:ZnS and Cr:ZnSe fabrication by post-growth thermal diffusion doping: large-size, uniformly doped polycrystalline gain elements for high power spinning ring MIR lasers Ø50 × 6 mm Cr:ZnSe (top) and Ø 50 × 5 mm Cr:ZnS (bottom)
Fig. 3
Fig. 3 Generic design of Kerr-lens mode-locked polycrystalline Cr:ZnS (ZnSe) oscillator (not to scale). EDFL, pump laser at 1550–1567nm; L, pump focusing lens; Cr:ZnS(ZnSe), AR coated polycrystalline gain element at normal incidence; HR, high reflectors; OC, output coupler; HR*, optional folding mirrors. All optical coatings are dispersion-controlled. SHG signal is generated in the gain element via RQPM process and separated by an optional dichroic mirror DM.
Fig. 4
Fig. 4 Spectra of pulses (a, top) and autocorrelations (b, c, bottom) of Cr:ZnS oscillator at fR = 84 MHz repetition rate. Two different output couplers (ROC = 90, 40%) provide different peak power levels inside the resonator (~2.5 MW and ~1.5 MW respectively). Measured spectrum of pulses includes: (f), fundamental MIR band; (2f), second harmonic (3f), third harmonic; (4f), fourth harmonic; (SFG), sum frequency generation between fs MIR pulses and cw pump radiation; (Pump), residual pump at 1567 nm. Near IR and visible optical signals (shown only for ROC = 90%) are attenuated and distorted during the transmission through the resonator’s HR mirrors, 2f and 3f peaks are normalized to unity for convenience. Gray background shows transmission of 1 m standard air. Inserts show measured output beam profiles.
Fig. 5
Fig. 5 Spectrum of pulses (a, top) and autocorrelations (b, c, bottom) of Cr:ZnS oscillator optimized for high SHG power at fR = 75 MHz. Fundamental MIR band (f) and second harmonic (2f) are normalized to unity; gray background shows transmission of 1 m standard air. Numbers near spectra show measured power and bandwidth. Numbers near autocorrelations show GDD, TOD of the optical components outside the resonator and estimated pulse widths. Insert shows measured output beam profile.
Fig. 6
Fig. 6 Single-pass Cr:ZnS (Cr:ZnSe) ultrafast amplifier (not to scale): (Cr:ZnS/ZnSe), amplifier’s gain element; (Pump), cw or pulsed laser for optical pumping; (MO), fs master oscillator; (L, M, DM), combination of lenses and mirrors for input/output dispersion control beam shaping, combining, and separation. The system can include an optional pulse picker and/or an optical isolator (OI).
Fig. 7
Fig. 7 Parameters of full repetition rate cw pumped single-pass fs Cr:ZnS amplifiers. Configurations (a) and (b) correspond to significantly different peak powers of seed pulses. Top: Measured autocorrelations (ACs). Initial ACs (In, amplifier’s pump is off) are compared with final ACs (Out, full pump power). Numbers near ACs show estimated pulse durations. Bottom: Measured spectra of pulses. Initial spectra (blue lines) normalized to unity; final spectra (red lines) normalized to optical power; grey lines show intermediate spectra, obtained during the gradual increase of pump power (all normalized to optical power). Numbers near the spectra show output power measured without pumping (In) and at full pump power (Out).
Fig. 8
Fig. 8 Spectral broadening (B) in single pass fs Cr:ZnS amplifiers vs. amplifier’s gain (G) (see main text for definition of the parameter B). Configurations (a) and (b) correspond to significantly different peak powers of seed pulses.
Fig. 9
Fig. 9 Pulse trains detected at the output of single-pass Cr:ZnSe amplifier pumped by 100 ns pulses at 1645 nm wavelength: (a), initial pulse train (amplifier’s pump is off); (b), EPump = 1.6 mJ; (c) EPump = 2.2 mJ. All waveforms were acquired using the same MIR detector; the waveforms (b) and (c) were then normalized to the amplitude of the initial signal (a). Red arrows in waveform (c) show a trace of a secondary pulse train, which appears due to an optical feedback between the fs master laser and the amplifier. Waveforms (a) and (b, c) are shown in different time-scales.
Fig. 10
Fig. 10 Measured spectrum of pulses of single-pass fs Cr:ZnSe amplifier with ns pulsed pumping. (In), Initial spectrum of 20 nJ seed pulses (obtained then the amplifier’s pump was off); (Out) spectrum of amplified ~10 µJ pulses. The sketch on the right illustrates timing diagram of the measurement. We stitched several spectra, which were measured with different detectors and filters (see Section 6). Error bars correspond to averaging of three sets of spectra that were acquired during ~1 hour.

Tables (2)

Tables Icon

Table 1 Parameters of fs polycrystalline Cr:ZnS oscillators near 2.4 µm central wavelengtha

Tables Icon

Table 2 Monochromators and detectors that were used for the acquisition of the spectraa

Metrics