Abstract

In this paper, by changing the ligand-to-metal charge transfer (LMCT) band through Mo6+ substitution, the excitation band of our prepared NaLaMg(W,Mo)O6:Eu3+ sample had been extended largely and could match with the InGaN-based LED chips successfully. Diffuse reflection spectra and photoluminescence properties of NaLaMg(W,Mo)O6:Eu3+ had been investigated as a function of W/Mo ratio. Density functional theory calculations gave an insight into the excitation band regulation on the aspect of band structure. The quantum efficiency together with thermal stability of typical prepared samples had been measured and investigated in detail. Moreover, a red LED device fabricated by a 375 nm UV chip with prepared NaLaMgW0.6Mo0.4O6:0.25Eu3+ phosphor had been obtained. Our study suggested that the NaLa0.75Eu0.25MgW0.6Mo0.4O6 phosphor might have potential value in serving as red component for WLEDs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A narrow red-emitting phosphor of NaLa4[Mo3O15]F:Eu3+ with broad excitation band extending in blue wavelength region

Shuyun Qi, Hongde Xie, Yanlin Huang, Sun Il Kim, and Hyo Jin Seo
Opt. Mater. Express 4(2) 190-197 (2014)

Eu3+-activated CdY4Mo3O16 nanoparticles with narrow red-emission and broad excitation in near-UV wavelength region

Ruijin Yu, Aiping Fan, Maosen Yuan, Tianbao Li, Qin Tu, Jinyi Wang, and Vincent Rotello
Opt. Mater. Express 6(7) 2397-2403 (2016)

ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor

Wei-Ren Liu, Chun Che Lin, Yi-Chen Chiu, Yao-Tsung Yeh, Shyue-Ming Jang, and Ru-Shi Liu
Opt. Express 18(3) 2946-2951 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
    [Crossref]
  2. Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
    [Crossref] [PubMed]
  3. C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
    [Crossref] [PubMed]
  4. Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
    [Crossref] [PubMed]
  5. L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
    [Crossref] [PubMed]
  6. X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
    [Crossref] [PubMed]
  7. Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
    [Crossref] [PubMed]
  8. K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
    [Crossref]
  9. R. Krishnan and J. Thirumalai, “Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln= Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation,” New J. Chem. 38(8), 3480–3491 (2014).
    [Crossref]
  10. J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
    [Crossref]
  11. Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
    [Crossref]
  12. Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
    [Crossref] [PubMed]
  13. D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
    [Crossref]
  14. S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
    [Crossref]
  15. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
    [Crossref] [PubMed]
  16. T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
    [Crossref]
  17. X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
    [Crossref] [PubMed]
  18. S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
    [Crossref] [PubMed]
  19. C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
    [Crossref]
  20. N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
    [Crossref] [PubMed]
  21. Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
    [Crossref]
  22. K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
    [Crossref] [PubMed]
  23. G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
    [Crossref]
  24. G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
    [Crossref]
  25. T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
    [Crossref]
  26. J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
    [Crossref]
  27. Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
    [Crossref]
  28. L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
    [Crossref]
  29. Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
    [Crossref]
  30. L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
    [Crossref]
  31. R. Coquet and D. J. Willock, “The (010) surface of α-MoO3, a DFT + U study,” Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005).
    [Crossref] [PubMed]
  32. Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
    [Crossref]
  33. J. A. Camargo-Martönez and R. Baquero, “Performance of the modified Becke-Johnson potential for semiconductors,” Phys. Rev. B 86(19), 195106 (2012).
    [Crossref]
  34. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [Crossref] [PubMed]
  35. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
    [Crossref] [PubMed]
  36. H. J. Monkhorst and J. D. B. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
    [Crossref]
  37. L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
    [Crossref]
  38. G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
    [Crossref]
  39. B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
    [Crossref]
  40. E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
    [Crossref] [PubMed]
  41. W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
    [Crossref] [PubMed]

2017 (1)

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

2016 (5)

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

2015 (6)

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
[Crossref] [PubMed]

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

2014 (8)

R. Krishnan and J. Thirumalai, “Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln= Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation,” New J. Chem. 38(8), 3480–3491 (2014).
[Crossref]

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
[Crossref]

S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
[Crossref]

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

2013 (4)

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

2012 (5)

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

J. A. Camargo-Martönez and R. Baquero, “Performance of the modified Becke-Johnson potential for semiconductors,” Phys. Rev. B 86(19), 195106 (2012).
[Crossref]

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

2011 (3)

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

2009 (1)

G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
[Crossref]

2008 (1)

G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
[Crossref]

2007 (1)

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

2006 (1)

K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
[Crossref]

2005 (1)

R. Coquet and D. J. Willock, “The (010) surface of α-MoO3, a DFT + U study,” Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005).
[Crossref] [PubMed]

1996 (1)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

1994 (1)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

1984 (1)

T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
[Crossref]

1976 (1)

H. J. Monkhorst and J. D. B. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Anoop, G.

G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
[Crossref]

Baquero, R.

J. A. Camargo-Martönez and R. Baquero, “Performance of the modified Becke-Johnson potential for semiconductors,” Phys. Rev. B 86(19), 195106 (2012).
[Crossref]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

Brik, M. G.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Camargo-Martönez, J. A.

J. A. Camargo-Martönez and R. Baquero, “Performance of the modified Becke-Johnson potential for semiconductors,” Phys. Rev. B 86(19), 195106 (2012).
[Crossref]

Chan, T. S.

S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
[Crossref] [PubMed]

Chen, T. M.

S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
[Crossref] [PubMed]

S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
[Crossref]

Chen, Y.

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Cheng, Z.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Coquet, R.

R. Coquet and D. J. Willock, “The (010) surface of α-MoO3, a DFT + U study,” Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005).
[Crossref] [PubMed]

Ding, N.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

Ding, X.

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Dwivedi, A.

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

Fang, M. H.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Feng, S.

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Fu, X.

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Grinberg, M.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Guo, N.

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Han, P.

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

Han, Y. X.

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

Hao, Z.

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

Hecht, C.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Henß, A. K.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Hirosaki, N.

T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
[Crossref]

Hou, D.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Hou, J.

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

Huang, C. H.

S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
[Crossref]

Huang, F.

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

Huang, K.

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Huang, Y.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Y. Huang, Y. Nakai, T. Tsuboi, and H. J. Seo, “The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications,” Opt. Express 19(7), 6303–6311 (2011).
[Crossref] [PubMed]

Huppertz, P.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Jayarajz, M. K.

G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
[Crossref]

Jia, Y.

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Jiang, H.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Jiang, J.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Jiang, W.

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

Jiao, M.

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Jin, Y.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Jing, X. P.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

Jung, H.-K.

K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
[Crossref]

Jung, K. Y.

K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
[Crossref]

King, G.

G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
[Crossref]

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

Ko, Y. H.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

Kresse, G.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Krishna, K. M.

G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
[Crossref]

Krishnan, R.

R. Krishnan and J. Thirumalai, “Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln= Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation,” New J. Chem. 38(8), 3480–3491 (2014).
[Crossref]

Kuang, X.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Kuang, X. J.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Lee, H. W.

K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
[Crossref]

Lee, S. P.

S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
[Crossref] [PubMed]

S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
[Crossref]

Lesniewski, T.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Li, K.

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Li, X.

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Lian, H.

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Liang, H.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Lin, C. C.

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Lin, J.

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Lin, J. G.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Liu, C.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Liu, C. M.

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Liu, Q.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

Liu, R. S.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Lu, Z.

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

Lü, W.

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Luo, G. Y.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Luo, Y.

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

lv, W.

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Ma, C.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Ma, X. G.

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

Mahlik, S.

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

Molokeev, M. S.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Monkhorst, H. J.

H. J. Monkhorst and J. D. B. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Nakai, Y.

Ningthoujam, R. S.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Pack, J. D. B.

H. J. Monkhorst and J. D. B. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Pan, G.-H.

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

Pavitra, E.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

Phaomei, G.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Poeppelmeier, K. R.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Pust, P.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Que, M.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Raju, G. S. R.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

Reith, T.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Rickert, K.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Scheu, C.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmidt, P. J.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Schmiechen, S.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Schnick, W.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Sekiya, T.

T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
[Crossref]

Seo, H. J.

Shang, M.

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Shanta Singh, N.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Shao, B.

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Siegert, M.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Singh, S. D.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Strobel, P.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

Su, Q.

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Suehiro, T.

T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
[Crossref]

Sun, S.

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Sun, Y. T.

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

Tao, Y.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

Thimmaiah, S.

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

Thirumalai, J.

R. Krishnan and J. Thirumalai, “Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln= Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation,” New J. Chem. 38(8), 3480–3491 (2014).
[Crossref]

Torii, Y.

T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
[Crossref]

Tsuboi, T.

Tücks, A.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Vatsa, R. K.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Vinu, A.

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Wang, C. H.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

Wang, J.

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Wang, L.

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

Wang, M. S.

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

Wang, X.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Wang, X. M.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

Wang, Y.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Wang, Y. X.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

Wayman, L. M.

G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
[Crossref]

Weiler, V.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Wiechert, D.

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Willock, D. J.

R. Coquet and D. J. Willock, “The (010) surface of α-MoO3, a DFT + U study,” Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005).
[Crossref] [PubMed]

Wochnik, A. S.

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

Woodward, P. M.

G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
[Crossref]

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

Wu, Q.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Xia, Z.

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

Xiao, W.

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

Xie, R. J.

T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
[Crossref]

Yamamoto, T.

T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
[Crossref]

Yan, J.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

Yang, C. L.

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

Yang, H.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

Yang, Z.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Yin, X.

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

You, H.

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Yu, J.

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Yu, J. S.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

Yuan, L.

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Zhang, B.

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

Zhang, C.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Zhang, J.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

Zhang, Q.

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

Zhang, X.

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

Zhang, Y.

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

Zhao, H.

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

Zhao, Q.

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Zhao, Z.

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

Zhou, L.

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

Zhou, Z.

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

Zou, R. Q.

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, “Narrow red emission band fluoride phosphor KNaSiF6:Mn4+ for warm white light-emitting diodes,” ACS Appl. Mater. Interfaces 8(18), 11194–11203 (2016).
[Crossref] [PubMed]

L. Zhang, J. Zhang, X. Zhang, Z. Hao, H. Zhao, and Y. Luo, “New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis,” ACS Appl. Mater. Interfaces 5(24), 12839–12846 (2013).
[Crossref] [PubMed]

S. P. Lee, T. S. Chan, and T. M. Chen, “Novel reddish-orange-emitting BaLa2Si2S8:Eu2+ thiosilicate phosphor for LED lighting,” ACS Appl. Mater. Interfaces 7(1), 40–44 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Chen, J. Wang, C. M. Liu, X. J. Kuang, and Q. Su, “A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes,” Appl. Phys. Lett. 98(8), 081917 (2011).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

T. Sekiya, T. Yamamoto, and Y. Torii, “Cation ordering in (NaLa)(MgW)O6 with the perovskite structure,” Bull. Chem. Soc. Jpn. 57(7), 1859–1862 (1984).
[Crossref]

Ceram. Int. (2)

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs,” Ceram. Int. 42(14), 15294–15300 (2016).
[Crossref]

Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, and L. Zhang, “Enhanced luminescence of a Eu3+-activated double perovskite (Na,Li)LaMgWO6 phosphor based on A site inducing energy transfer,” Ceram. Int. 42(12), 13855–13862 (2016).
[Crossref]

Chem. Mater. (3)

K. Y. Jung, H. W. Lee, and H.-K. Jung, “Luminescent properties of (Sr,Zn)Al2O4:Eu2+,B3+ particles as a potential green phosphor for UV LEDs,” Chem. Mater. 18(9), 2249–2255 (2006).
[Crossref]

S. Schmiechen, P. Strobel, C. Hecht, T. Reith, M. Siegert, P. J. Schmidt, P. Huppertz, D. Wiechert, and W. Schnick, “Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors,” Chem. Mater. 27(5), 1780–1785 (2015).
[Crossref]

G. King, S. Thimmaiah, A. Dwivedi, and P. M. Woodward, “Synthesis and Characterization of New AA′BWO6 Perovskites Exhibiting Simultaneous Ordering of A-Site and B-Site Cations,” Chem. Mater. 19(26), 6451–6458 (2007).
[Crossref]

Cryst. Growth Des. (1)

B. Shao, Q. Zhao, N. Guo, Y. Jia, W. lv, M. Jiao, W. Lü, and H. You, “YF3:Eu3+ micro-single crystals: fine morphological tuning and luminescence properties,” Cryst. Growth Des. 13(8), 3582–3587 (2013).
[Crossref]

Dalton Trans. (1)

N. Shanta Singh, R. S. Ningthoujam, G. Phaomei, S. D. Singh, A. Vinu, and R. K. Vatsa, “Re-dispersion and film formation of GdVO4 : Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies,” Dalton Trans. 41(15), 4404–4412 (2012).
[Crossref] [PubMed]

Ind. Eng. Chem. Res. (1)

T. Suehiro, R. J. Xie, and N. Hirosaki, “Gas-Reduction–Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting,” Ind. Eng. Chem. Res. 53(7), 2713–2717 (2014).
[Crossref]

Inorg. Chem. (4)

X. M. Wang, C. H. Wang, X. J. Kuang, R. Q. Zou, Y. X. Wang, and X. P. Jing, “Promising oxonitridosilicate phosphor host Sr3Si2O4N2: synthesis, structure, and luminescence properties activated by Eu2+ and Ce3+/Li+ for pc-LEDs,” Inorg. Chem. 51(6), 3540–3547 (2012).
[Crossref] [PubMed]

X. Fu, W. Lü, M. Jiao, and H. You, “Broadband yellowish-green emitting Ba4Gd3Na3(PO4)6F2:Eu2+ phosphor: structure refinement, energy transfer, and thermal stability,” Inorg. Chem. 55(12), 6107–6113 (2016).
[Crossref] [PubMed]

Y. Liu, C. Zhang, Z. Cheng, Z. Zhou, J. Jiang, and H. Jiang, “Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24:Eu2+ blue phosphor,” Inorg. Chem. 55(17), 8628–8635 (2016).
[Crossref] [PubMed]

W. Xiao, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, L. Zhang, and J. Zhang, “Blue-Emitting K2Al2B2O7:Eu2+ Phosphor with High Thermal Stability and High Color Purity for Near-UV-Pumped White Light-Emitting Diodes,” Inorg. Chem. 54(7), 3189–3195 (2015).
[Crossref] [PubMed]

J. Alloys Compd. (2)

L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, and Q. Zhang, “Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu3+ phosphor based on alternative excitation and delayed quenching,” J. Alloys Compd. 642, 45–52 (2015).
[Crossref]

Y. X. Han, C. L. Yang, Y. T. Sun, M. S. Wang, and X. G. Ma, “The novel optical properties of CdS caused by concentration of impurity Co,” J. Alloys Compd. 585, 503–509 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Xia, C. Ma, M. S. Molokeev, Q. Liu, K. Rickert, and K. R. Poeppelmeier, “Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1–xMgx)(Al1–xSi1+x)O7:Eu2+ phosphor,” J. Am. Chem. Soc. 137(39), 12494–12497 (2015).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

G. Anoop, K. M. Krishna, and M. K. Jayarajz, “The effect of Mg incorporation on structural and optical properties of Zn2GeO4:Mn phosphor,” J. Electrochem. Soc. 155(1), J7–J10 (2008).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (4)

L. Zhang, Z. Lu, P. Han, L. Wang, and Q. Zhang, “Synthesis and photoluminescence of Eu3+-activated double perovskite NaGdMg(W,Mo)O6 – a potential red phosphor for solid state lighting,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(1), 54–57 (2013).
[Crossref]

Q. Wu, Z. Yang, Z. Zhao, M. Que, X. Wang, and Y. Wang, “Synthesis, crystal structure and luminescence properties of a Y4Si2O7N2:Ce3+ phosphor for near-UV white LEDs,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(25), 4967–4973 (2014).
[Crossref]

S. P. Lee, C. H. Huang, and T. M. Chen, “CaY2 Si2S8:Ce3+: a novel green-emitting thiosilicate phosphor for white light-emitting diodes,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(42), 8925–8931 (2014).
[Crossref]

D. Hou, C. Liu, X. Ding, X. Kuang, H. Liang, S. Sun, Y. Huang, and Y. Tao, “A high efficiency blue phosphor BaCa2MgSi2O8:Eu2+ under VUV and UV excitation,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(3), 493–499 (2013).
[Crossref]

J. Phys. Chem. C (1)

C. Liu, D. Hou, J. Yan, L. Zhou, X. Kuang, H. Liang, Y. Huang, B. Zhang, and Y. Tao, “Energy transfer and tunable luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and low-voltage electron beam excitation,” J. Phys. Chem. C 118(6), 3220–3229 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

C. C. Lin and R. S. Liu, “Advances in phosphors for light-emitting diodes,” J. Phys. Chem. Lett. 2(11), 1268–1277 (2011).
[Crossref] [PubMed]

J. Solid State Chem. (1)

G. King, L. M. Wayman, and P. M. Woodward, “Magnetic and structural properties of NaLnMnWO6 and NaLnMgWO6 perovskites,” J. Solid State Chem. 182(6), 1319–1325 (2009).
[Crossref]

Mater. Res. Bull. (1)

J. Hou, X. Yin, F. Huang, and W. Jiang, “Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE = Eu, Sm, Tb) phosphor for white LED application,” Mater. Res. Bull. 47(6), 1295–1300 (2012).
[Crossref]

Nat. Mater. (1)

P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. Henß, D. Wiechert, C. Scheu, P. J. Schmidt, and W. Schnick, “Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material,” Nat. Mater. 13(9), 891–896 (2014).
[Crossref] [PubMed]

New J. Chem. (2)

R. Krishnan and J. Thirumalai, “Up/down conversion luminescence properties of (Na0.5Gd0.5)MoO4:Ln3+ (Ln= Eu, Tb, Dy, Yb/Er, Yb/Tm, and Yb/Ho) microstructures: synthesis, morphology, structural and magnetic investigation,” New J. Chem. 38(8), 3480–3491 (2014).
[Crossref]

J. Yu, K. Huang, L. Yuan, and S. Feng, “Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors,” New J. Chem. 38(4), 1441–1445 (2014).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (3)

K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, and J. Lin, “Host-sensitized luminescence in LaNbO4:Ln(3+ (Ln3+ = Eu3+/Tb3+/Dy3+) with different emission colors,” Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015).
[Crossref] [PubMed]

R. Coquet and D. J. Willock, “The (010) surface of α-MoO3, a DFT + U study,” Phys. Chem. Chem. Phys. 7(22), 3819–3828 (2005).
[Crossref] [PubMed]

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys. 14(32), 11296–11307 (2012).
[Crossref] [PubMed]

Phys. Rev. B (2)

H. J. Monkhorst and J. D. B. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

J. A. Camargo-Martönez and R. Baquero, “Performance of the modified Becke-Johnson potential for semiconductors,” Phys. Rev. B 86(19), 195106 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (2)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter 50(24), 17953–17979 (1994).
[Crossref] [PubMed]

Sci. Adv. Mater. (1)

L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, and Q. Zhang, “Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO6:Eu3+ Phosphor Based on A-Site-Induced Energy Transfer,” Sci. Adv. Mater. 9(3), 442–451 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 XRD patterns of typical NaLa0.95Eu0.05Mg(W1 -m Mo m )O6 samples together with the standard data of NaLaMgWO6 and La2MoO6 for comparison.
Fig. 2
Fig. 2 Observed (crosses) and calculated (red solid line) powder XRD patterns of the NaLa0.95Eu0.05MgW0.6Mo0.4O6 sample. The blue solid line is the difference between experimental and calculated data and the green sticks present the Bragg reflection positions.
Fig. 3
Fig. 3 Calculated band structures and density of states (DOSs) of (a) NaLaMgWO6 and (b) NaLaMgW0.6Mo0.4O6 near the Fermi energy (EF) level.
Fig. 4
Fig. 4 Diffuse reflection spectra of our prepared samples.
Fig. 5
Fig. 5 Calculated energy gaps (Eg) of (a) NaLaMgWO6 and (b) NaLaMgW0.6Mo0.4O6 from the diffuse reflectance spectra.
Fig. 6
Fig. 6 The excitation and emission spectra of (a) NaLaMgWO6, (b) NaLaMgWO6:0.05Eu3+ and (c) NaLaMgW0.6Mo0.4O6:0.05Eu3+ phosphors.
Fig. 7
Fig. 7 XRD patterns of NaLa(1- x )Eu x MgW0.6Mo0.4O6 samples with different doping contents.
Fig. 8
Fig. 8 (a) Photoluminescence and reflection spectra of NaLaMgW0.6Mo0.4O6:0.25Eu3+ phosphor. (b) Emission intensity of NaLaMgW0.6Mo0.4O6:xEu3+ samples with different Eu3+ contents.
Fig. 9
Fig. 9 Electroluminescent spectrum of the red LED device encapsulated with a 375 nm UV chip and as-prepared NaLaMgW0.6Mo0.4O6:0.25Eu3+ phosphor. The inset shows the CIE coordinate diagram together with a digital image of the LED device.
Fig. 10
Fig. 10 The decay curves of NaLa1- x MgW0.6Mo0.4O6:xEu3+ phosphors (λex = 375 nm, λem = 620nm).
Fig. 11
Fig. 11 (a) Emission spectra at different temperatures and (b) dependence of emission intensity and CIE coordinates on temperature of NaLaMgW0.6Mo0.4O6:0.25Eu3+ phosphor.

Tables (1)

Tables Icon

Table 1 Final refined structure parameters of NaLa0.95Eu0.05MgW0.6Mo0.4O6 derived from the Rietveld refinement of X-ray diffraction data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ F ( R ) h ν ] n = A ( h ν E g )
F ( R ) = ( 1 R ) 2 2 R = K S

Metrics