Abstract

In this paper, a shared aperture (SA) metasurface (MS) possesses ultra-wideband and wide-angle low-scattering performance is proposed and realized. Different from previous MS designs that mainly focus on one dimension, the SA MS design is divided into two dimensions, and the scattering performance is improved through effective integration of the two dimension design. Due to the introduction of the SA concept, a 10dB reflection magnitude reduction of MS is achieved almost from 4.8GHz to 16.4GHz (109.4%) for the incident angle below 30°. Simulated and measured results prove that our method offers an effective strategy to design high performance MS and promotes the MS for practical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

Integrated radiation and scattering performance of a multifunctional artificial electromagnetic surface

Yuejun Zheng, Xiangyu Cao, Jun Gao, Huanhuan Yang, Yulong Zhou, and Tao Liu
Opt. Express 25(24) 30001-30012 (2017)

Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface

Xin Yan, Lanju Liang, Jing Yang, Weiwei Liu, Xin Ding, Degang Xu, Yating Zhang, Tiejun Cui, and Jianquan Yao
Opt. Express 23(22) 29128-29137 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
    [Crossref]
  2. H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
    [Crossref]
  3. G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
    [Crossref] [PubMed]
  4. J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
    [Crossref] [PubMed]
  5. W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
    [Crossref] [PubMed]
  6. S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  7. X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
    [Crossref]
  8. W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
    [Crossref] [PubMed]
  9. M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
    [Crossref]
  10. M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
    [Crossref]
  11. L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
    [Crossref]
  12. K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
    [Crossref]
  13. Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
    [Crossref]
  14. C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
    [Crossref]
  15. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
    [Crossref]
  16. J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
    [Crossref]
  17. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
    [Crossref]
  18. S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
    [Crossref]
  19. Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
    [Crossref]
  20. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  21. P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
    [Crossref] [PubMed]
  22. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  23. S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
    [Crossref] [PubMed]
  24. M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
    [Crossref]
  25. W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
    [Crossref]
  26. J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
    [Crossref]
  27. C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
    [Crossref] [PubMed]
  28. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  29. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
    [Crossref] [PubMed]
  30. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref] [PubMed]
  31. H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
    [Crossref] [PubMed]
  32. T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
    [Crossref]
  33. J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
    [Crossref]
  34. A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
    [Crossref]
  35. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
    [Crossref] [PubMed]
  36. X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
    [Crossref] [PubMed]
  37. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
    [Crossref] [PubMed]
  38. A. Foroozesh and L. Shafai, “Magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag. 59(1), 4–20 (2011).
    [Crossref]
  39. P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
    [Crossref] [PubMed]

2017 (1)

2016 (19)

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
[Crossref] [PubMed]

W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
[Crossref] [PubMed]

J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
[Crossref]

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
[Crossref]

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
[Crossref]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

2015 (8)

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
[Crossref] [PubMed]

X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref] [PubMed]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

2014 (4)

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

2013 (2)

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[Crossref] [PubMed]

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

2011 (1)

A. Foroozesh and L. Shafai, “Magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag. 59(1), 4–20 (2011).
[Crossref]

2009 (2)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Afzal, M. U.

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
[Crossref]

Agarwal, M.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
[Crossref]

Alù, A.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[Crossref] [PubMed]

Amendola, G.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Argyropoulos, C.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[Crossref] [PubMed]

Arnieri, E.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Balanis, C. A.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Bao, D.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Behera, A. K.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
[Crossref]

Birtcher, C. R.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Boccia, L.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Breinbjerg, O.

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Cai, B. G.

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

Caira, N. W.

Cao, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
[Crossref] [PubMed]

Cao, X. Y.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Che, Y. X.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Chen, L.

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

Chen, P. Y.

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[Crossref] [PubMed]

Chen, T. Y.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

Chen, W. G.

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Chen, X.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Cheng, Q.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[Crossref] [PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cheng, Y. J.

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T.

Cui, T. J.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[Crossref] [PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

de Falcon, J. L. M.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

de Maagt, P.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Ding, X.

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Du, L.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Ederra, I.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

Ederra, I. Ñ.

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Engheta, N.

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Esmaeli, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

Esselle, K. P.

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
[Crossref]

Fan, J.

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

Fang, D. G.

J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
[Crossref]

Foroozesh, A.

A. Foroozesh and L. Shafai, “Magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag. 59(1), 4–20 (2011).
[Crossref]

Gao, J.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
[Crossref] [PubMed]

Gong, S. X.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Gonzalo, R.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Gothelf, U.

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

Guo, Y. J.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Han, J.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Huang, B.

Huang, C.

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

Iriarte, J.-C.

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Iriarte Galarregui, J. C.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jia, S.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Jia, Y. T.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Jiang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kandasamy, K.

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Kang, M.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Ke, Y.

Kim, B. J.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, H. T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, O. S.

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Larouche, S.

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Lei, Z. Y.

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

Li, K.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Li, L.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Li, M.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Li, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
[Crossref] [PubMed]

Li, Y.

Li, Y. B.

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

Li, Z. R.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Liang, L.

Ling, X.

Lipworth, G.

Liu, J.

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, S.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Liu, W.

Liu, Y.

W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, “Propagation model for vector beams generated by metasurfaces,” Opt. Express 24(18), 21177–21189 (2016).
[Crossref] [PubMed]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

Liu, Z.

Lu, Y.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Luo, H.

Luo, X. G.

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

Ma, H. F.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Ma, X. L.

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Majumder, B.

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Meniconi, E.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Meshram, M. K.

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
[Crossref]

Mo, W.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mukherjee, J.

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Ouyang, C.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Pan, W. B.

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

Paquay, M.

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Premaratne, M. L.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Qi, K. N.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Qi, M. Q.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Ray, K. P.

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sandhu, A. I.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Sedighy, S. H.

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

Shafai, L.

A. Foroozesh and L. Shafai, “Magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag. 59(1), 4–20 (2011).
[Crossref]

Shi, G. M.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, W.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Shi, X. W.

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

Shi, Y.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shu, W.

Smith, D. R.

G. Lipworth, N. W. Caira, S. Larouche, and D. R. Smith, “Phase and magnitude constrained metasurface holography at W-band frequencies,” Opt. Express 24(17), 19372–19387 (2016).
[Crossref] [PubMed]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Smith, T.

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

Su, J. X.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Su, P.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Tang, W. X.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Tellechea Pereda, A.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Wan, X.

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

Wang, H.

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Wang, H. B.

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
[Crossref]

Wang, K.

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

Wang, T. Q.

Wei, X.

Wu, W.

J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
[Crossref]

Xiao, F. J.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Xu, D.

Xu, Q.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Xu, S.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yan, X.

Yang, F.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yang, H.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Yang, H. H.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

Yang, J.

Yang, R.

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

Yang, Y. Q.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Yao, J.

Yin, X.

Yu, S. X.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Yuan, H.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Yuan, W.

Yuan, Z. D.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Zhang, C.

Zhang, J. D.

J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
[Crossref]

Zhang, W.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, J.

J. Zhao, Q. Cheng, T. Q. Wang, W. Yuan, and T. J. Cui, “Fast design of broadband terahertz diffusion metasurfaces,” Opt. Express 25(2), 1050–1061 (2017).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

Zheng, Y.

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

S. Li, J. Gao, X. Cao, Z. Zhang, Y. Zheng, and C. Zhang, “Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial,” Opt. Express 23(3), 3523–3533 (2015).
[Crossref] [PubMed]

Zheng, Y. J.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

Zheng, Z. Y.

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Zhou, X. X.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhou, X. Y.

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

Zhu, C.

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, W. R.

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

Ziegler, V.

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

Appl. Phys. Lett. (3)

W. R. Zhu, F. J. Xiao, M. Kang, and M. L. Premaratne, “Coherent perfect absorption in an all-dielectric metasurface,” Appl. Phys. Lett. 108(12), 121901 (2016).
[Crossref]

S. X. Yu, L. Li, G. M. Shi, C. Zhu, X. X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

X. Wan, Y. B. Li, B. G. Cai, and T. J. Cui, “Simultaneous controls of surface waves and propagating waves by metasurfaces,” Appl. Phys. Lett. 105(12), 121603 (2014).
[Crossref]

Electron. Lett. (2)

M. Agarwal, A. K. Behera, and M. K. Meshram, “Wide-angle quad-band polarisationin sensitive metamaterial absorber,” Electron. Lett. 52(5), 340–342 (2016).
[Crossref]

S. H. Esmaeli and S. H. Sedighy, “Wideband radar cross-section reduction by AMC,” Electron. Lett. 52(1), 70–71 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (3)

K. Kandasamy, B. Majumder, J. Mukherjee, and K. P. Ray, “Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1638–1641 (2015).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14, 1582–1585 (2015).
[Crossref]

C. Huang, W. B. Pan, X. L. Ma, and X. G. Luo, “Wideband radar cross section reduction of a stacked patch array antenna using metasurface,” IEEE Antennas Wirel. Propag. Lett. 14, 1369–1372 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (12)

M. U. Afzal and K. P. Esselle, “A low-profile printed planar phase correcting surface to improve directive radiation characteristics of electromagnetic band gap resonator antennas,” IEEE Trans. Antenn. Propag. 64(1), 276–280 (2016).
[Crossref]

L. Chen, Z. Y. Lei, R. Yang, J. Fan, and X. W. Shi, “A broadband artificial material for gain enhancement of antipodal tapered slot antenna,” IEEE Trans. Antenn. Propag. 63(1), 395–400 (2015).
[Crossref]

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband radar cross-section reduction using AMC technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antenn. Propag. 64(1), 179–188 (2016).
[Crossref]

M. Paquay, J.-C. Iriarte, I. Ñ. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC structure for radar cross-section reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

W. G. Chen, C. A. Balanis, and C. R. Birtcher, “Dual wide-band checkerboard surfaces for radar cross section reduction,” IEEE Trans. Antenn. Propag. 64(9), 4133–4138 (2016).
[Crossref]

A. Foroozesh and L. Shafai, “Magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas,” IEEE Trans. Antenn. Propag. 59(1), 4–20 (2011).
[Crossref]

H. B. Wang and Y. J. Cheng, “Frequency selective surface with miniaturized elements based on quarter-mode substrate integrated waveguide cavity with two poles,” IEEE Trans. Antenn. Propag. 64(3), 914–922 (2016).
[Crossref]

T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antenn. Propag. 62(2), 661–668 (2014).
[Crossref]

J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag. 64(1), 109–116 (2016).
[Crossref]

A. I. Sandhu, E. Arnieri, G. Amendola, L. Boccia, E. Meniconi, and V. Ziegler, “Radiating elements for shared aperture Tx/Rx phased arrays at K/Ka band,” IEEE Trans. Antenn. Propag. 64(6), 2270–2282 (2016).
[Crossref]

J. Appl. Phys. (1)

J. X. Su, Y. Lu, Z. Y. Zheng, Z. R. Li, Y. Q. Yang, Y. X. Che, and K. N. Qi, “Fast analysis and optimal design of metasurface for wideband monostatic and multistatic radar stealth,” J. Appl. Phys. 120(20), 205107 (2016).
[Crossref]

Light Sci. Appl. (2)

S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, “Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves,” Light Sci. Appl. 5(5), e16076 (2016).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Nat. Mater. (1)

C. Della Giovampaola and N. Engheta, “Digital metamaterials,” Nat. Mater. 13(12), 1115–1121 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (2)

P. Y. Chen, C. Argyropoulos, and A. Alù, “Broadening the cloaking bandwidth with non-Foster metasurfaces,” Phys. Rev. Lett. 111(23), 233001 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (4)

P. Su, Y. Zhao, S. Jia, W. Shi, and H. Wang, “An Ultra-wideband and polarization-independent metasurface for RCS reduction,” Sci. Rep. 6(1), 20387 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2015).
[Crossref] [PubMed]

X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, “Field-programmable beam reconfiguring based on digitally-controlled coding metasurface,” Sci. Rep. 6(1), 20663 (2016).
[Crossref] [PubMed]

H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, “A programmable metasurface with dynamic polarization, scattering and focusing control,” Sci. Rep. 6(1), 35692 (2016).
[Crossref] [PubMed]

Science (3)

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic geometry of (a) reference element E1, (b) reference element E2, (c) proposed element E1 and (d) proposed element E2. Brassy yellow indicates copper and blue indicates dielectric substrate. Design parameters of the elements are LP = 9.0mm, L1 = 7.34mm, L2 = 0.5mm, L3 = 4.7mm, L4 = 8.7mm, L5 = 1.9mm, L6 = 5.8 mm, t1 = 3.0mm, t2 = 3.0mm. (e) Reflection phases of the reference and proposed elements.
Fig. 2
Fig. 2 Current distributions of the proposed element E1 at (a) 4.2GHz and (b) 12.3GHz. Reflection phases of proposed element E1 for (c) different L3 and (d) different L4.
Fig. 3
Fig. 3 (a) The schematic layout of the MS. Simulated reflection reduction for (b) x polarization and (c) y polarization. 3D scattering patterns comparison of the MS and same sized metallic plane at 9.5GHz for (d) 0° and (e) 30° incident waves.
Fig. 4
Fig. 4 (a) Fabricated shared aperture MS. (b) The basic measurement setup. The reflection reduction for (c) horizontal (x in simulation) polarization and (d) vertical (y in simulation) polarization for 0° and 30° incident waves.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

143°| φ element 1 φ element2 |217°
E s (θ,φ)=cosθ m=0 M1 n=0 N1 A mn e j α mn cosθ mn Γ mn e j ϕ mn e j k 0 ( m d x sinθcosφ+n d y sinθsinφ )
E s (θ,φ)= (1 sin 2 θ cos 2 φ sin 2 θ sin 2 φ) 1/2 MNIDFT( A mn e j α mn cosθ mn Γ mn e j ϕ mn )
Cost=max[ E s (θ,φ)]
BW=2( f H f L )/( f H + f L )×100%

Metrics