Abstract

In this work, we demonstrate that whispering gallery mode (WGM) resonances can be observed in small ZnO microspheres embedded with Au nanoparticles (AuNPs). In general, one can enhance the WGM resonances by decreasing air fraction in porous ZnO microsphere resonators grown by the hydrothermal method. We demonstrate that embedding AuNPs in a porous microsphere can achieve this effect. Moreover, as the size of such a hybrid microsphere resonator shrinks, the presence of AuNPs near the surface can further enhance the WGM resonances due to the plasmonic effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis

Trong Huynh-Buu Ngo, Ching-Hang Chien, Shang-Hsuan Wu, and Yia-Chung Chang
Opt. Express 24(14) 16010-16015 (2016)

Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance

Steven H. Huang, Xuefeng Jiang, Bo Peng, Corey Janisch, Alexander Cocking, Şahin Kaya Özdemir, Zhiwen Liu, and Lan Yang
Photon. Res. 6(5) 346-356 (2018)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).
  2. R. B. Wehrspohn and J. Upping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
    [Crossref]
  3. G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).
  4. C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
    [Crossref]
  5. M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
    [Crossref]
  6. W. Liu, B. Lei, and A. E. Miroshnichenko, “Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles,” Opt. Lett. 41(15), 3563–3566 (2016).
    [Crossref] [PubMed]
  7. R. S. Moirangthem, P. J. Cheng, P. C. Chien, B. T. Ngo, S. W. Chang, C. H. Tien, and Y. C. Chang, “Optical cavity modes of a single crystalline zinc oxide microsphere,” Opt. Express 21(3), 3010–3020 (2013).
    [Crossref] [PubMed]
  8. T. H. Ngo, C. H. Chien, S. H. Wu, and Y. C. Chang, “Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis,” Opt. Express 24(14), 16010–16015 (2016).
    [Crossref] [PubMed]
  9. V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” J. Opt. Soc. Am. A 33(7), 1244–1256 (2016).
    [Crossref] [PubMed]
  10. J. R. Chen, T. C. Lu, Y. C. Wu, S. C. Lin, W. F. Hsieh, S. C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express 19(5), 4101–4112 (2011).
    [Crossref] [PubMed]
  11. A. Julien and P. Guillon, “Electromagnetic analysis of spherical dielectric shielded resonators,” IEEE Trans. Microw. Theory Tech. 34(6), 723–729 (1986).
    [Crossref]
  12. L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
    [Crossref]
  13. F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
    [Crossref]
  14. N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
    [Crossref] [PubMed]
  15. T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
    [Crossref] [PubMed]
  16. P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
    [Crossref]
  17. R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
    [Crossref] [PubMed]
  18. F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
    [Crossref]
  19. L. K. Ono and B. R. Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects,” J. Phys. Chem. C 112(12), 4676–4686 (2008).
    [Crossref]
  20. Y. Minowa, Y. Oguni, and M. Ashida, “Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium,” Opt. Express 25(9), 10449–10455 (2017).
    [Crossref] [PubMed]
  21. V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
    [Crossref]
  22. V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.- Usp. 44(10), 1061–1073 (2001).
    [Crossref]

2017 (2)

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Y. Minowa, Y. Oguni, and M. Ashida, “Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium,” Opt. Express 25(9), 10449–10455 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (1)

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

2014 (3)

T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
[Crossref] [PubMed]

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

2013 (2)

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

R. S. Moirangthem, P. J. Cheng, P. C. Chien, B. T. Ngo, S. W. Chang, C. H. Tien, and Y. C. Chang, “Optical cavity modes of a single crystalline zinc oxide microsphere,” Opt. Express 21(3), 3010–3020 (2013).
[Crossref] [PubMed]

2012 (2)

R. B. Wehrspohn and J. Upping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
[Crossref]

2011 (2)

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

J. R. Chen, T. C. Lu, Y. C. Wu, S. C. Lin, W. F. Hsieh, S. C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express 19(5), 4101–4112 (2011).
[Crossref] [PubMed]

2008 (1)

L. K. Ono and B. R. Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects,” J. Phys. Chem. C 112(12), 4676–4686 (2008).
[Crossref]

2006 (1)

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

2005 (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

2001 (1)

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.- Usp. 44(10), 1061–1073 (2001).
[Crossref]

1992 (1)

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

1986 (1)

A. Julien and P. Guillon, “Electromagnetic analysis of spherical dielectric shielded resonators,” IEEE Trans. Microw. Theory Tech. 34(6), 723–729 (1986).
[Crossref]

Amutha, R.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Ashida, M.

Biroju, R. K.

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Chakarov, D.

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

Chang, S. W.

Chang, Y. C.

Chanu, T. I.

T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
[Crossref] [PubMed]

Chen, H.

F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
[Crossref]

Chen, J. R.

Chen, P. K.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Chen, Zh.

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Cheng, P. J.

Chien, C. H.

Chien, P. C.

Cuenya, B. R.

L. K. Ono and B. R. Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects,” J. Phys. Chem. C 112(12), 4676–4686 (2008).
[Crossref]

Datsyuk, V. V.

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.- Usp. 44(10), 1061–1073 (2001).
[Crossref]

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

Davies, S. H.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Deng, H.

Dhara, S.

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Fredriksson, H.

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

Fujii, M.

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Giri, P. K.

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Gogurla, N.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Gu, F.

F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
[Crossref]

Gu, P.

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Guillon, P.

A. Julien and P. Guillon, “Electromagnetic analysis of spherical dielectric shielded resonators,” IEEE Trans. Microw. Theory Tech. 34(6), 723–729 (1986).
[Crossref]

Han, D.

F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
[Crossref]

Hsieh, W. F.

IIchenko, V. S

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

Imakita, K.

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Izmailov, I. A.

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.- Usp. 44(10), 1061–1073 (2001).
[Crossref]

Jonsson, G. E.

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

Julien, A.

A. Julien and P. Guillon, “Electromagnetic analysis of spherical dielectric shielded resonators,” IEEE Trans. Microw. Theory Tech. 34(6), 723–729 (1986).
[Crossref]

Lee, G. J.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Lei, B.

Li, Z.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Lin, S. C.

Liu, W.

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

W. Liu, B. Lei, and A. E. Miroshnichenko, “Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles,” Opt. Lett. 41(15), 3563–3566 (2016).
[Crossref] [PubMed]

Liu, Zh.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Lu, T. C.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

Manna, S.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Manoharan, P. T.

T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
[Crossref] [PubMed]

Markel, V. A.

Masten, S. J.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

Minowa, Y.

Miroshnichenko, A. E.

Moirangthem, R. S.

Muthukumar, T.

T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
[Crossref] [PubMed]

Ngo, B. T.

Ngo, T. H.

Ni, X.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Oguni, Y.

Ono, L. K.

L. K. Ono and B. R. Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects,” J. Phys. Chem. C 112(12), 4676–4686 (2008).
[Crossref]

Patil, K. R.

F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
[Crossref]

Ray, S. K.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Salandrino, A.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Santra, S.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

Sellappan, R.

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

Sheini, F. J.

F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
[Crossref]

Sinha, A. K.

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Song, Y.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

Sun, L.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Tien, C. H.

Upping, J.

R. B. Wehrspohn and J. Upping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

Wan, M.

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Wang, L.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Wang, S. C.

Wang, Z.

F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
[Crossref]

Wang, Zh.

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Wehrspohn, R. B.

R. B. Wehrspohn and J. Upping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

Wei, G.

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Wu, C.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Wu, J. J.

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Wu, S. H.

Wu, Y. C.

Yousefi, R.

F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
[Crossref]

Zhang, X.

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

R. K. Biroju, P. K. Giri, S. Dhara, K. Imakita, and M. Fujii, “Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties,” ACS Appl. Mater. Interfaces 6(1), 377–387 (2014).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54(2), 184–187 (1992).
[Crossref]

Appl. Phys. Lett. (1)

M. Wan, P. Gu, W. Liu, Zh. Chen, and Zh. Wang, “Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities,” Appl. Phys. Lett. 110(3), 031103 (2017).
[Crossref]

Ceram. Int. (1)

F. J. Sheini, R. Yousefi, and K. R. Patil, “Surface characterization of Au-ZnO nanowire films,” Ceram. Int. 38(8), 6665–6670 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Julien and P. Guillon, “Electromagnetic analysis of spherical dielectric shielded resonators,” IEEE Trans. Microw. Theory Tech. 34(6), 723–729 (1986).
[Crossref]

Int. J. Photoenergy (1)

G. E. Jonsson, H. Fredriksson, R. Sellappan, and D. Chakarov, “Nanostructures for enhanced light absorption in solar energy devices,” Int. J. Photoenergy 2011, 939807 (2011).

IPN Progress Report (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S IIchenko, and L. Maleki, “Review of applications of whispering gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42, 162 (2005).

J. Opt. (1)

R. B. Wehrspohn and J. Upping, “3D photonic crystals for photon management in solar cells,” J. Opt. 14(2), 024003 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

L. K. Ono and B. R. Cuenya, “Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects,” J. Phys. Chem. C 112(12), 4676–4686 (2008).
[Crossref]

Mater. Lett. (1)

L. Sun, G. Wei, Y. Song, Zh. Liu, L. Wang, and Z. Li, “Solution-phase synthesis of Au@ZnO core-shell composites,” Mater. Lett. 60(9-10), 1291–1295 (2006).
[Crossref]

Mater. Res. Bull. (1)

P. K. Chen, G. J. Lee, S. H. Davies, S. J. Masten, R. Amutha, and J. J. Wu, “Hydrothermal synthesis of coral-like Au/ZnO catalyst and photocatalytic degradation of Orange II dye,” Mater. Res. Bull. 48(6), 2375–2382 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

T. I. Chanu, T. Muthukumar, and P. T. Manoharan, “Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity,” Phys. Chem. Chem. Phys. 16(43), 23686–23698 (2014).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. Wu, A. Salandrino, X. Ni, and X. Zhang, “Electrodynamical light trapping using whispering gallery resonances in hyperbolic cavities,” Phys. Rev. X 4(2), 021015 (2014).
[Crossref]

Phys.- Usp. (1)

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.- Usp. 44(10), 1061–1073 (2001).
[Crossref]

RSC Advances (1)

F. Gu, H. Chen, D. Han, and Z. Wang, “Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their higly sensitive detection of acetone,” RSC Advances 6(35), 29727–29733 (2016).
[Crossref]

Sci. Rep. (1)

N. Gogurla, A. K. Sinha, S. Santra, S. Manna, and S. K. Ray, “Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices,” Sci. Rep. 4(1), 6483 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Porosity fraction for the 1.87μm ZnO resonator associated with different mode assignments for the peak positions: mode number l from 10 to 21 (black), 11-22 (red), 12-23 (blue), and 13-24 (pink). (b) Comparison between theory and experiment at optimized air fraction of 17% for the 1.87 μm ZnO resonator with mode assignment given by the blue curve in Fig. 1(a). (c) SEM pictures of h-MSs of sizes 1.77 μm, 4.95 μm, 5.13 μm, and 6.27 μm.
Fig. 2
Fig. 2 XPS spectra of hybrid Au@ZnO MS (a) survey spectrum, (b) Zn 3p – Au 4f region, (c) Zn 2p3/2 region, (d) O 1s region.
Fig. 3
Fig. 3 WGM spectra in Au-ZnO MS of various sizes (a) 2.76 μm (b) 1.77 μm, and (c) 1.28 μm (in red). Spectra in black and purple are for porous ZnO MS.
Fig. 4
Fig. 4 (From left to right) Au NPs distribution for different sizes (1.28, 1.40, 1.69, 1.77, 2.03 and 2.76 μm).

Tables (2)

Tables Icon

Table 1 Binding energy in hybrid Au-ZnO MS

Tables Icon

Table 2 Component characteristics in hybrid Au-ZnO MS

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( ε eff ε med )/( ε eff +2 ε med )= δ inc ( ε inc ε med )/( ε inc +2 ε me ) ,
E TE (r,θ,ϕ)={ A j l ( n 1 kr) X lm ( θ,ϕ ) if r<b [ B j l ( n 2 kr)+C y l ( n 2 kr) ] X lm ( θ,ϕ ) if b<r <R D h l (1) (kr) X lm ( θ,ϕ ) if R<r
B TE (r,θ,ϕ)= 1 k × E (r,θ,ϕ)
{ A j l ( n 1 kb)B j l ( n 2 kb)C y l ( n 2 kb) =0 B j l ( n 2 kR) +C y l ( n 2 kR)D h l (1) (kR) =0 A n 1 j l '( n 1 kb)B n 2 j l '( n 2 kb)C n 2 y l '( n 2 kb) =0 B n 2 j l '( n 2 kR)+C n 2 y l '( n 2 kR)D h l ' (1) (kR) =0,

Metrics