Abstract

High sensing sensitivity and accuracy is valuable for optical temperature sensors in practical applications. Er3+/Yb3+ co-doped BaZrO3 ceramics were prepared by the dry pressing method. The upconversion luminescence of Er3+/Yb3+ co-doped BaZrO3 ceramics was studied at a temperature range from 300 to 500 K under different pump power. The ratio of non-thermal coupling levels of 4S3/2, 4I9/24I15/2 (I546/I875), and 4F9/2, 4I9/24I15/2 (I658/I875) show a linear relationship as the temperature increased. The maximum relative sensitivity was estimated to be 1.39% K−1 at 500 K under 90 mW pump power. The result indicated that the BaZrO3:Er3+/Yb3+ ceramic is a promising candidate for high temperature sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

Optical thermometry based on upconversion luminescence of Yb3+-Er3+ and Yb3+-Ho3+ doped Y6WO12 phosphors

Songsong An, Jia Zhang, and Lei Zhao
Appl. Opt. 58(27) 7451-7457 (2019)

Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).
  2. Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).
  3. D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).
  4. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).
  5. D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).
  6. Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).
  7. T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).
  8. R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).
  9. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
  10. D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).
  11. S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).
  12. B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).
  13. A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).
  14. X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).
  15. X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).
  16. X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).
  17. P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
  18. H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).
  19. D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).
  20. Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).
  21. P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).
  22. L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).
  23. I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).
  24. C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).
  25. X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).
  26. R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).
  27. B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).
  28. J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).
  29. V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).
  30. L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).
  31. L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).
  32. L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).
  33. D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).
  34. S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).
  35. A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

2017 (1)

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

2016 (10)

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).

X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

2015 (8)

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

2014 (2)

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).

2013 (3)

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).

2012 (1)

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

2011 (1)

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

2010 (4)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

2008 (2)

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

2007 (1)

X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).

2005 (1)

C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).

2004 (1)

I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).

Al-Shamery, K.

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

Andres, J.

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

Angeles-Chavez, C.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

Ángeles-Chavez, C.

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

Borja-Urby, R.

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

Bu, Y.

X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Cai, P.

Cao, B. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

Cao, R.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

Cao, Z.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Castaño, V. M.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

Ceng, X.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

Chaoxiang, X.

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Chen, B.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Chen, D.

D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Chen, H.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

Chen, Y.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).

Cui, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Das, D.

D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).

De la Rosa, E.

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

Diaz-Torres, L. A.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

Ding, M.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Dong, B.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

Dong, Z.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Du, P.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

Duan, C.

Feng, Z. Q.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

Fu, J.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Ge, Y.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Grinberg, I.

I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).

Guo, L.

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

Guo, S.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

Haase, M.

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

He, Y. Y.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

Hu, Y.

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

Huang, J.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

Huang, P.

D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).

Jacinto, C.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

Jaque, D.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Ji, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Jiadan, X.

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Jiang, G.

Jiang, S.

Jin, H.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Junli, D.

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Khatkar, S. P.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Kim, S. H.

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

Kumar, K.

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

Kumar, K. U.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

Kumar, M.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Kumar, V.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

Laihui, L.

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Li, J.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Li, L.

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

Li, W.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

Li, X.

Li, Y. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

Li, Z.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Liu, C.-S.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Liu, M.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Liu, Q.

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Liu, T.

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Liu, X.

X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).

Longo, E.

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

Luo, L.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

Ma, Y.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Macario, L. R.

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

Mahata, M. K.

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

Marí, B.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Marques-Hueso, J.

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Moreira, M. L.

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

Morinaga, M.

C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Nanda, K. K.

D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).

Oliva, J.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

Pandey, A.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).

Peng, D.

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Pereira, A. F.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

Perez-Huerta, J. S.

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

Qian, G.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Qin, L.

Rai, V. K.

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).

Rappe, A. M.

I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).

Rosa, E. D.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

Sahal, M.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Salas, P.

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

Santos, W. Q.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Seo, H. J.

Shi, C.

C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).

Shinde, S. L.

D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).

Silva, W. F.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

Singh, K. C.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Singh, V.

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

Song, R.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Song, Z.

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

Sui, Y.

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

Swart, H. C.

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

Taxak, V. B.

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

Tiwari, S. P.

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

Vega-Gonzalez, M.

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Vu, T.

Wan, Z.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Wang, J.

Wang, X.

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

X. Wang, Q. Liu, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics,” Opt. Express 24(16), 17792–17804 (2016).

X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).

Wang, Y.

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

Wang, Z.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Wei, T.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Wei, X.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).

Wu, C.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Xia, X.

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

Xie, Y.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Xu, M.

D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).

Xu, W.

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

Yan, X.

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, and H. J. Seo, “Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors,” Opt. Lett. 41(22), 5314–5317 (2016).

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Yang, Y.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Yin, M.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

S. Zhou, G. Jiang, X. Li, S. Jiang, X. Wei, Y. Chen, M. Yin, and C. Duan, “Strategy for thermometry via Tm3+-doped NaYF4 core-shell nanoparticles,” Opt. Lett. 39(23), 6687–6690 (2014).

Yoshino, M.

C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).

Yu, J.

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Yu, J. S.

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).

Yu, Y.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Yue, Q.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Zhang, T.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Zhang, X.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Zhao, C.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Zhao, L.

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

Zhao, Y.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Zhong, C.

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

Zhong, J.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Zhou, H.

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

Zhou, Q.

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

Zhou, S.

Zhou, X.

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Zhou, Y.

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

Zhu, X.

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

Zou, H.

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

ACS Appl. Mater. Interfaces (3)

D. Chen, Z. Wan, Y. Zhou, X. Zhou, Y. Yu, J. Zhong, M. Ding, and Z. Ji, “Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors,” ACS Appl. Mater. Interfaces 7(34), 19484–19493 (2015).

D. Das, S. L. Shinde, and K. K. Nanda, “Temperature-Dependent Photoluminescence of g-C3N4: implication for temperature sensing,” ACS Appl. Mater. Interfaces 8(3), 2181–2186 (2016).

Z. Cao, X. Wei, L. Zhao, Y. Chen, and M. Yin, “Investigation of SrB4O7:Sm2+ as a multimode temperature sensor with high sensitivity,” ACS Appl. Mater. Interfaces 8(50), 34546–34551 (2016).

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).

Adv. Mater. (1)

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, and G. Qian, “Dual-emitting MOF⊃Dye composite for ratiometric temperature sensing,” Adv. Mater. 27(8), 1420–1425 (2015).

Appl. Phys. Lett. (2)

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5 Ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Ca0. 3) TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).

I. Grinberg and A. M. Rappe, “Silver solid solution piezoelectrics,” Appl. Phys. Lett. 85(10), 1760–1762 (2004).

Ceram. Int. (2)

T. Wei, Z. Dong, C. Zhao, Y. Ma, T. Zhang, Y. Xie, Q. Zhou, and Z. Li, “Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18,” Ceram. Int. 42(4), 5537–5545 (2016).

R. Cao, X. Ceng, J. Huang, X. Xia, S. Guo, and J. Fu, “A double-perovskite Sr2ZnWO6: Mn4+ deep red phosphor: Synthesis and luminescence properties,” Ceram. Int. 42(15), 16817–16821 (2016).

CrystEngComm (1)

L. R. Macario, M. L. Moreira, J. Andres, and E. Longo, “An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions,” CrystEngComm 12(11), 3612–3619 (2010).

Dalton Trans. (1)

A. Pandey and V. K. Rai, “Improved luminescence and temperature sensing performance of Ho3+-Yb3+-Zn2+:Y2O3 phosphor,” Dalton Trans. 42(30), 11005–11011 (2013).

Int. J. Nanotechnol. (1)

L. A. Diaz-Torres, P. Salas, J. Oliva, E. D. Rosa, C. Angeles-Chavez, and V. M. Castaño, “NaOH–controlled upconversion of nanocrystalline BaZrO3:Er,Yb phosphor,” Int. J. Nanotechnol. 10(12), 1055–1063 (2013).

J. Alloys Compd. (4)

D. Chen, W. Xu, Y. Zhou, and Y. Chen, “Lanthanide doped BaTiO3SrTiO3 solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior,” J. Alloys Compd. 676, 215–223 (2016).

Y. Zhao, Y. Ge, X. Zhang, Y. Zhao, H. Zhou, J. Li, and H. Jin, “Comprehensive investigation of Er2O3 doped (Li, K, Na) NbO3 ceramics rendering potential application in novel multifunctional devices,” J. Alloys Compd. 683, 171–177 (2016).

P. Du, L. Luo, and J. S. Yu, “Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics,” J. Alloys Compd. 632, 73–77 (2015).

L. Guo, C. Zhong, X. Wang, and L. Li, “Synthesis and photoluminescence properties of Er3+ doped BaZrO3 nanotube arrays,” J. Alloys Compd. 530, 22–25 (2012).

J. Appl. Phys. (1)

J. Oliva, E. D. Rosa, L. A. Diaz-Torres, P. Salas, and C. Ángeles-Chavez, “Annealing effect on the luminescence properties of BaZrO3:Yb3+ microcrystals,” J. Appl. Phys. 104(2), 023505 (2008).

J. Electron. Mater. (1)

H. Zou, X. Wang, Y. Hu, X. Zhu, Y. Sui, and Z. Song, “Optical temperature sensor through upconversion emission from the Er3+ Doped SrBi8Ti7O27 ferroelectrics,” J. Electron. Mater. 45(6), 2745–2749 (2016).

J. Lumin. (1)

B. Marí, K. C. Singh, M. Sahal, S. P. Khatkar, V. B. Taxak, and M. Kumar, “Preparation and luminescence properties of Tb3+ doped ZrO2 and BaZrO3 phosphors,” J. Lumin. 130(11), 2128–2132 (2010).

J. Nanosci. Nanotechnol. (1)

L. A. Diaz-Torres, P. Salas, J. S. Perez-Huerta, C. Angeles-Chavez, and E. De la Rosa, “A new blue, green and red upconversion emission nanophosphor: BaZrO3:Er,Yb,” J. Nanosci. Nanotechnol. 8(12), 6425–6430 (2008).

J. Rare Earths (1)

D. Junli, D. Peng, X. Jiadan, X. Chaoxiang, and L. Laihui, “Piezoelectric and upconversion emission properties of Er3+-doped 0.5 Ba (Zr0.2Ti0.8) O3− 0.5 (Ba0.7Ca0.3)TiO3 ceramic,” J. Rare Earths 33(4), 391–396 (2015).

Mater. Sci. Eng. B (1)

R. Borja-Urby, L. A. Diaz-Torres, P. Salas, M. Vega-Gonzalez, and C. Angeles-Chavez, “Blue and red emission in wide band gap BaZrO3:Yb3+,Tm3+,” Mater. Sci. Eng. B 174(1-3), 169–173 (2010).

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

X. Liu and X. Wang, “Preparation and luminescence properties of BaZrO3:Eu phosphor powders,” Opt. Mater. 30(4), 626–629 (2007).

RSC Advances (1)

X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Advances 5(105), 86219–86236 (2015).

Sci. Rep. (1)

X. Wang, Y. Wang, J. Marques-Hueso, and X. Yan, “Improving optical temperature sensing performance of Er3+ Doped Y2O3 microtubes via co-doping and controlling excitation power,” Sci. Rep. 7(1), 758 (2017).

Sens. Actuators B Chem. (4)

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).

D. Chen, M. Xu, and P. Huang, “Core@ shell upconverting nanoarchitectures for luminescent sensing of temperature,” Sens. Actuators B Chem. 231, 576–583 (2016).

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159(1), 8–11 (2011).

A. Pandey, V. K. Rai, V. Kumar, V. Kumar, and H. C. Swart, “Upconversion based temperature sensing ability of Er3+–Yb3+codoped SrWO4: An optical heating phosphor,” Sens. Actuators B Chem. 209, 352–358 (2015).

Solid State Ion. (1)

C. Shi, M. Yoshino, and M. Morinaga, “First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba),” Solid State Ion. 176(11-12), 1091–1096 (2005).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

V. Singh, V. K. Rai, K. Al-Shamery, M. Haase, and S. H. Kim, “NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 141–145 (2013).

S. P. Tiwari, M. K. Mahata, K. Kumar, and V. K. Rai, “Enhanced temperature sensing response of upconversion luminescence in ZnO-CaTiO3: Er3+/Yb3+ nano-composite phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 150, 623–630 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a). The XRD patterns of the BaZrO3-xEr, 15mol%Yb ceramic doped with different Er3+ ion concentrations; (b). Schematic illustration of the cubic BaErxYb0.15Zr0.85-xO3 perovskite structure.
Fig. 2
Fig. 2 (a) UC emission spectra of the BaZrO3-xEr, 15mol%Yb ceramic doped with different Er3+ concentrations under the 980 nm excitation. (b) Energy-level diagrams and proposed UC energy transfer pathways in the Yb3+-Er3+
Fig. 3
Fig. 3 Log–log plots of intensity and pumping power for 526 nm, 546 nm, 658 nm, 679 nm, and 875 nm emissions at room temperature
Fig. 4
Fig. 4 UC spectra of the BaZrO3: 15mol%Yb3+/5mol%Er3+ ceramic under different pump power at 350 K.
Fig. 5
Fig. 5 UC emission spectra of the BaZrO3: 5 mol% Er3+, 15 mol% Yb3+ ceramic at various temperatures (peak A: 526 nm, peak B: 546nm, peak C: 658 nm, peak D: 679nm, peak E: 875 nm) (a) 90 mW excitation power. (b) 65 mW excitation power.
Fig. 6
Fig. 6 The fluorescence intensity ratio as a function of temperature in the range of 300~500 K under 980 nm excitation. (a) 90 mW excitation power. (b) 65 mW excitation power.
Fig. 7
Fig. 7 Relative sensitivity for BaZrO3: 15mol%Yb3+/5mol%Er3+ at (a) pump power 90 mW, (b) 65 mW at temperatures from 300 to 500 K.

Tables (1)

Tables Icon

Table 1 comparative data table for sensor sensitivity for different samples

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F I R = I U I L = a T + b
S r = d ( I U / I L ) d T I L I U
Δ T = Δ F I R | a |

Metrics